von der Helm K
Max-von-Pettenkofer Institut, Ludwig-Maximilians-Universität, München, Germany.
Biol Chem. 1996 Dec;377(12):765-74.
Retrovirally encoded proteases are responsible for the maturation of immature viral particles yielding mature, infectious virus. This is done by apparent (auto)-processing and self-activation of the protease (PR) from a larger viral gag-PR-(pol) protein (zymogen) precursor and subsequent processing of the viral reverse transcriptase (RT) and integrase (IN), and the gag protein precursor into mature gag proteins. Only the matured components are capable of forming capsids for intact, infectious viruses. Blocking this proteolytic process results in production of immature, non-infective virions. All retroviral proteases are aspartic-type proteases. Determination of the three-dimensional structure revealed retroviral proteases as small, nearly symmetric homodimers. This prompted de novo design of inhibitors for the HIV protease taking advantage of the unique symmetric structure of the active center, unparalleled by cellular proteases. The novel substances inhibit in vitro the HIV protease at nanomolar/subnanomolar concentrations and exhibit very low toxicity. They are inactive against human proteases such as renin or pepsin. The HIV protease inhibitors (PI) represent a promising alternative to the reverse transcriptase (RT) inhibitors (AZT, ddC, ddI) hitherto used with limited success for HIV chemotherapy. Clinical studies confirmed the low toxicity but revealed a pharmacological pattern typical for these hydrophobic compounds, such as low water solubility, poor oral bioavailibility, and short plasma half-life. Typical for antimicrobial agents, also a resistance phenomenon became evident. Latest clinical results show, however, promisingly that both problems might be overcome by application of the PI in combination with RT inhibitors (such as AZT, ddI or ddC) exerting a remarkable synergistic antiviral effect with lasting restoration of the CD4-T-cell level.
逆转录病毒编码的蛋白酶负责将未成熟的病毒颗粒成熟为成熟的、有感染性的病毒。这是通过蛋白酶(PR)从较大的病毒gag-PR-(pol)蛋白(酶原)前体进行明显的(自身)加工和自激活,随后将病毒逆转录酶(RT)和整合酶(IN)以及gag蛋白前体加工成成熟的gag蛋白来完成的。只有成熟的组分能够形成完整的、有感染性的病毒衣壳。阻断这种蛋白水解过程会导致产生未成熟的、无感染性的病毒粒子。所有逆转录病毒蛋白酶都是天冬氨酸型蛋白酶。三维结构的测定揭示逆转录病毒蛋白酶为小的、近乎对称的同二聚体。这促使利用活性中心独特的对称结构从头设计HIV蛋白酶抑制剂,而细胞蛋白酶没有这种结构。这些新物质在体外以纳摩尔/亚纳摩尔浓度抑制HIV蛋白酶,并且毒性非常低。它们对诸如肾素或胃蛋白酶等人类蛋白酶无活性。HIV蛋白酶抑制剂(PI)是迄今用于HIV化疗但效果有限的逆转录酶(RT)抑制剂(齐多夫定、双脱氧胞苷、双脱氧肌苷)的一种有前景的替代物。临床研究证实了其低毒性,但揭示了这些疏水化合物典型的药理学模式,如低水溶性、口服生物利用度差和血浆半衰期短。与抗菌剂一样,耐药现象也很明显。然而,最新的临床结果令人鼓舞地表明,通过将PI与RT抑制剂(如齐多夫定、双脱氧肌苷或双脱氧胞苷)联合应用,这两个问题可能会得到克服,联合应用可产生显著的协同抗病毒作用,并持续恢复CD4-T细胞水平。