Suppr超能文献

Feature discovery and classification of Doppler umbilical artery blood flow velocity waveforms.

作者信息

Baykal N, Reggia J A, Yalabik N, Erkmen A, Beksac M S

机构信息

Middle East Technical University, Department of Computer Engineering, Ankara, Turkey.

出版信息

Comput Biol Med. 1996 Nov;26(6):451-62. doi: 10.1016/s0010-4825(96)00018-2.

Abstract

Doppler umbilical artery blood flow velocity waveform measurements are used in perinatal surveillance for the evaluation of fetal condition. There is an ongoing debate on the predictive value of Doppler measurements concerning the critical effect of the selection of parameters for the interpretation of Doppler waveforms. In this paper, we describe how neural network methods can be used both to discover relevant classification features and subsequently to classify Doppler umbilical artery blood flow velocity waveforms. Results obtained from 199 normal and high risk patients' umbilical artery waveforms highlighted a classification concordance varying from 90 to 98% accuracy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验