Ke S H, Tachias K, Lamba D, Bode W, Madison E L
Department of Vascular Biology, The Scripps Research Institute, La Jolla, California.
J Biol Chem. 1997 Jan 17;272(3):1811-6. doi: 10.1074/jbc.272.3.1811.
A wide variety of important biological processes, including both the formation and dissolution of blood clots, depend on specific cleavage of individual target proteins by serine proteases. For example, tissue type plasminogen activator (t-PA), a trypsin-like enzyme that catalyzes the rate-limiting step of the endogenous fibrinolytic cascade, has only one known substrate in vivo, a single peptide bond (Arg561-Val562) in the proenzyme plasminogen. We have previously suggested that the specificity of t-PA for plasminogen is mediated in part by direct protein-protein interactions between the protease domain of t-PA and plasminogen that are distinct from those occurring within t-PA's active site. We demonstrate in this study that residues 420-423 of t-PA, which form a fully solvent-exposed, hydrophobic region of a surface loop mapping near one edge of the active site of t-PA, form, or are essential for the integrity of, an important, secondary site of interaction between t-PA and plasminogen that significantly modulates the rate of plasminogen activation in the absence, but not the presence, of fibrin. Identification of this secondary site of interaction between t-PA and plasminogen provides new insight into molecular details of the evolution of stringent substrate specificity by t-PA and suggests a novel strategy to enhance the fibrin dependence of plasminogen activation by t-PA. While the activity of wild type t-PA is stimulated by fibrin by a factor of approximately 650, the activity of two variants characterized in this study, t-PA/R275E,P422G and t-PA/R275E,P422E, is stimulated by a factor of approximately 39,000 or 61,000, respectively. It is therefore possible that, compared with wild type t-PA, the two variants would display enhanced "clot selectivity" in vivo due to reduced activity in the circulation but full activity at a site of fibrin deposition.
多种重要的生物学过程,包括血凝块的形成与溶解,都依赖于丝氨酸蛋白酶对单个靶蛋白的特异性切割。例如,组织型纤溶酶原激活物(t-PA)是一种类似胰蛋白酶的酶,它催化内源性纤维蛋白溶解级联反应的限速步骤,在体内其已知底物仅有一个,即纤溶酶原酶原中的一个单一肽键(精氨酸561 - 缬氨酸562)。我们之前曾提出,t-PA对纤溶酶原的特异性部分是由t-PA的蛋白酶结构域与纤溶酶原之间直接的蛋白质-蛋白质相互作用介导的,这些相互作用不同于在t-PA活性位点内发生的相互作用。我们在本研究中证明,t-PA的420 - 423位残基形成了一个完全暴露于溶剂中的疏水区域,该区域位于t-PA活性位点一条边缘附近的表面环上,它形成了t-PA与纤溶酶原之间一个重要的二级相互作用位点,或者对其完整性至关重要,在没有纤维蛋白但有纤维蛋白存在时,该位点会显著调节纤溶酶原激活的速率。t-PA与纤溶酶原之间这个二级相互作用位点的鉴定为t-PA严格底物特异性进化的分子细节提供了新的见解,并提出了一种增强t-PA介导的纤溶酶原激活对纤维蛋白依赖性的新策略。野生型t-PA的活性受纤维蛋白刺激约650倍,而本研究中表征的两个变体t-PA/R275E,P422G和t-PA/R275E,P422E的活性分别受纤维蛋白刺激约39000倍或61000倍。因此,与野生型t-PA相比,这两个变体在体内可能由于循环中活性降低但在纤维蛋白沉积部位具有完全活性而表现出增强的“凝块选择性”。