Sindelar D K, Chu C A, Rohlie M, Neal D W, Swift L L, Cherrington A D
Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA.
Diabetes. 1997 Feb;46(2):187-96. doi: 10.2337/diab.46.2.187.
We investigated the mechanism by which a selective increase in arterial insulin can suppress hepatic glucose production in vivo. Isotopic (3-3H-glucose) and arteriovenous difference methods were used in overnight-fasted, conscious dogs. A pancreatic clamp (somatostatin, basal portal insulin, and glucagon infusions) was used to control the endocrine pancreas. Equilibration (100 min) and basal (40 min) periods were followed by a 180-min test period. In control dogs (n = 5), basal insulin delivery was continued throughout the study. In the other two groups, peripheral insulin was selectively increased at the beginning of the test period by stopping the portal insulin infusion and infusing insulin peripherally at twice the basal portal rate. One group (INS + FAT; n = 6) received an infusion of 20% intralipid + heparin (0.5 U x kg(-1) x min(-1)) to clamp the nonesterified fatty acid (NEFA) levels during hyperinsulinemia; the other group (INS; n = 7) received only saline during the experimental period. In the INS group, a selective increase in peripheral insulin of 84 pmol/l was achieved (36 +/- 6 to 120 +/- 24 pmol/l, last 30 min) while portal insulin was unaltered (84 +/- 18 pmol/l). In the INS + FAT group, a similar increase in peripheral insulin was achieved (36 +/- 6 to 114 +/- 6 pmol/l, last 30 min); again, portal insulin was unaltered (96 +/- 12 pmol/l). In the control group, basal insulin did not change. Glucagon and glucose remained near basal values in all protocols. In the INS group, NEFA levels dropped from 700 +/- 90 (basal) to 230 +/- 65 micromol/l (last 30 min; P > 0.05), but in the INS + FAT group changed minimally (723 +/- 115 [basal] to 782 +/- 125 micromol/l [last 30 min]). In the INS group, net hepatic glucose output dropped by 6.7 micromol x kg(-1) x min(-1) (P < 0.05), whereas in the INS + FAT group it dropped by 3.9 micromol x kg(-1) x min(-1) (P < 0.05). When insulin levels were not increased (i.e., in the control group), net hepatic glucose output dropped 1.7 micromol x kg(-1) x min(-1) (P < 0.05). In all groups, the net hepatic glucose output data were confirmed by the tracer-determined glucose production data. In the INS group, net hepatic gluconeogenic substrate uptake (alanine, glutamine, glutamate, glycerol, glycine, lactate, threonine, and serine) fell slightly (10.4 +/- 1.3 [basal] to 7.2 +/- 1.3 micromol x kg(-1) x min(-1) [last 30 min]), whereas in the INS + FAT group it did not change (7.3 +/- 1.5 [basal] to 7.4 +/- 0.6 micromol x kg(-1) x min(-1) [last 30 min]), and in the control group it increased slightly (9.6 +/- 1.3 [basal] to 10.3 +/- 1.4 micromol x kg(-1) x min(-1) [last 30 min). These results indicate that peripheral insulin's ability to regulate hepatic glucose production is partially linked to its inhibition of lipolysis. When plasma NEFA levels were prevented from falling during a selective arterial hyperinsulinemia, approximately 55% of insulin's inhibition of net hepatic glucose output (NHGO) was eliminated. The fall in NEFA levels brings about a redirection of glycogenolytically derived carbon within the hepatocyte such that there is an increase in lactate efflux and a corresponding decrease in NHGO.
我们研究了动脉血胰岛素选择性增加可在体内抑制肝葡萄糖生成的机制。采用同位素(3 - 3H - 葡萄糖)和动静脉差方法,对禁食过夜的清醒犬进行研究。使用胰腺钳夹术(注射生长抑素、基础门静脉胰岛素和胰高血糖素)来控制内分泌胰腺。先进行平衡期(100分钟)和基础期(40分钟),随后是180分钟的测试期。在对照犬(n = 5)中,整个研究过程持续输注基础胰岛素。在另外两组中,在测试期开始时通过停止门静脉胰岛素输注并以基础门静脉速率的两倍外周输注胰岛素,选择性增加外周血胰岛素。一组(INS + FAT;n = 6)在高胰岛素血症期间输注20%的脂肪乳剂 + 肝素(0.5 U·kg⁻¹·min⁻¹)以钳制非酯化脂肪酸(NEFA)水平;另一组(INS;n = 7)在实验期间仅输注生理盐水。在INS组中,外周血胰岛素选择性增加至84 pmol/l(从36 ± 6升至120 ± 24 pmol/l,最后30分钟),而门静脉胰岛素未改变(84 ± 18 pmol/l)。在INS + FAT组中,外周血胰岛素也有类似增加(从36 ± 6升至114 ± 6 pmol/l,最后30分钟);门静脉胰岛素同样未改变(96 ± 12 pmol/l)。在对照组中,基础胰岛素水平未变化。在所有方案中,胰高血糖素和葡萄糖水平均维持在基础值附近。在INS组中,NEFA水平从700 ± 90(基础值)降至230 ± 65 μmol/l(最后30分钟;P > 0.05),但在INS + FAT组中变化极小(从723 ± 115[基础值]升至782 ± 125 μmol/l[最后30分钟])。在INS组中,肝脏葡萄糖净输出量下降了6.7 μmol·kg⁻¹·min⁻¹(P < 0.05),而在INS + FAT组中下降了3.9 μmol·kg⁻¹·min⁻¹(P < 0.05)。当胰岛素水平未升高时(即对照组),肝脏葡萄糖净输出量下降了1.7 μmol·kg⁻¹·min⁻¹(P < 0.05)。在所有组中,肝脏葡萄糖净输出量数据均得到示踪剂测定的葡萄糖生成数据的证实。在INS组中,肝脏糖异生底物摄取量(丙氨酸、谷氨酰胺、谷氨酸、甘油、甘氨酸、乳酸、苏氨酸和丝氨酸)略有下降(从10.4 ± 1.3[基础值]降至7.2 ± 1.3 μmol·kg⁻¹·min⁻¹[最后30分钟]),而在INS + FAT组中未改变(从7.3 ± 1.5[基础值]升至7.4 ± 0.6 μmol·kg⁻¹·min⁻¹[最后30分钟]),在对照组中略有增加(从9.6 ± 1.3[基础值]升至10.3 ± 1.4 μmol·kg⁻¹·min⁻¹[最后30分钟])。这些结果表明,外周血胰岛素调节肝脏葡萄糖生成的能力部分与其对脂肪分解的抑制作用有关。当在选择性动脉高胰岛素血症期间防止血浆NEFA水平下降时,胰岛素对肝脏葡萄糖净输出量(NHGO)的抑制作用约有55%被消除。NEFA水平的下降导致肝细胞内糖原分解产生的碳重新分布,使得乳酸外流增加,同时NHGO相应减少。