Lima W F, Crooke S T
Isis Pharmaceuticals, Inc., Carlsbad, California 92008, USA.
Biochemistry. 1997 Jan 14;36(2):390-8. doi: 10.1021/bi962230p.
In this study we report for the first time the binding affinity of RNase H1 for oligonucleotide duplexes. We used a previously described 17-mer antisense sequence [Monia, B. P., Johnston, J. F., Ecker, D. J., Zounes, M. A., Lima, W. F., & Freier, S. M. (1992) J. Biol. Chem. 267, 19954-19962] hybridized to a complementary oligoribonucleotide to evaluate both the binding affinity and the catalytic rate of RNase H1. The dissociation constants (Kd) of RNase H1 for the various substrates tested were determined by inhibition analysis using chemically modified noncleavable oligonucleotide heteroduplexes. Catalytic rates were determined using heteroduplex substrates containing chimeric antisense oligonucleotides composed of a five-base deoxynucleotide sequence flanked on either side by chemically modified nucleotides. We find that the enzyme preferentially binds A-form duplexes: RNase H bound A-form duplexes (RNA:RNA and DNA:RNA) approximately 60-fold tighter than B-form duplexes (DNA:DNA) and approximately 300-fold tighter than single-strand oligonucleotides. The enzyme exhibited equal affinity for both the wild type (RNA:DNA) oligonucleotide substrate and heteroduplexes containing various 2'-sugar modifications, while the cleavage rates for these chemically modified substrates were without exception slower than for the wild type substrate. The introduction of a single positively charged 2'-propoxyamine modification into the chimeric antisense oligonucleotide portion of the heteroduplex substrate resulted in both decreased binding affinity and a slower rate of catalysis by RNase H. The cleavage rates for heteroduplexes containing single-base mismatch sequences within the chimeric oligonucleotide portion varied depending on the position of the mismatch but had no effect on the binding affinity of the enzyme. These results offer further insights into the physical binding properties of the RNase H-substrate interaction as well as the design of effective antisense oligonucleotides.
在本研究中,我们首次报道了核糖核酸酶H1(RNase H1)与寡核苷酸双链体的结合亲和力。我们使用了先前描述的17聚体反义序列[莫尼亚,B.P.,约翰斯顿,J.F.,埃克,D.J.,祖内斯,M.A.,利马,W.F.,& 弗赖尔,S.M.(1992年)《生物化学杂志》267卷,19954 - 19962页]与互补寡核糖核苷酸杂交,以评估RNase H1的结合亲和力和催化速率。通过使用化学修饰的不可切割寡核苷酸异源双链体进行抑制分析,测定了RNase H1对各种测试底物的解离常数(Kd)。使用含有嵌合反义寡核苷酸的异源双链体底物测定催化速率,该嵌合反义寡核苷酸由一个五碱基脱氧核苷酸序列组成,两侧为化学修饰的核苷酸。我们发现该酶优先结合A型双链体:RNase H与A型双链体(RNA:RNA和DNA:RNA)的结合比B型双链体(DNA:DNA)紧密约60倍,比单链寡核苷酸紧密约300倍。该酶对野生型(RNA:DNA)寡核苷酸底物和含有各种2'-糖修饰的异源双链体表现出同等亲和力,而这些化学修饰底物的切割速率无一例外比野生型底物慢。在异源双链体底物的嵌合反义寡核苷酸部分引入单个带正电荷的2'-丙氧基胺修饰,导致结合亲和力降低以及RNase H的催化速率减慢。在嵌合寡核苷酸部分含有单碱基错配序列的异源双链体的切割速率因错配位置而异,但对酶的结合亲和力没有影响。这些结果为RNase H - 底物相互作用的物理结合特性以及有效反义寡核苷酸的设计提供了进一步的见解。