Li J, Meyer A N, Donoghue D J
Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla 92093-0367, USA.
Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):502-7. doi: 10.1073/pnas.94.2.502.
M-phase promoting factor or maturation promoting factor, a key regulator of the G2-->M transition of the cell cycle, is a complex of cdc2 and a B-type cyclin. We have previously shown that Xenopus cyclin B1 has five sites of Ser phosphorylation, four of which map to a recently identified cytoplasmic retention signal (CRS). The CRS appears to be responsible for the cytoplasmic localization of B-type cyclins, although the underlying mechanism is still unclear. Phosphorylation of cyclin B1 is not required for cdc2 binding or cdc2 kinase activity. However, when all of the Ser phosphorylation sites in the CRS are mutated to Ala to abolish phosphorylation, the mutant cyclin B1Ala is inactivated; activity can be enhanced by mutation of these residues to Glu to mimic phosphoserine, suggesting that phosphorylation of cyclin B1 is required for its biological activity. Here we show that biological activity can be restored to cyclin B1Ala by appending either a nuclear localization signal (NLS), or a second CRS domain with the Ser phosphorylation sites mutated to Glu, while fusion of a second CRS domain with the Ser phosphorylation sites mutated to Ala inactivates wild-type cyclin B1. Nuclear histone H1 kinase activity was detected in association with cyclin B1Ala targeted to the nucleus by a wild-type NLS, but not by a mutant NLS. These results demonstrate that nuclear translocation mediates the biological activity of cyclin B1 and suggest that phosphorylation within the CRS domain of cyclin B1 plays a regulatory role in this process. Furthermore, given the similar in vitro substrate specificity of cyclin-dependent kinases, this investigation provides direct evidence for the hypothesis that the control of subcellular localization of cyclins plays a key role in regulating the biological activity of cyclin-dependent kinase-cyclin complexes.
M期促进因子或成熟促进因子是细胞周期G2期向M期转变的关键调节因子,它是细胞分裂周期蛋白2(cdc2)和B型细胞周期蛋白的复合物。我们之前已经表明,非洲爪蟾细胞周期蛋白B1有5个丝氨酸磷酸化位点,其中4个位于最近发现的细胞质滞留信号(CRS)区域。尽管其潜在机制仍不清楚,但CRS似乎负责B型细胞周期蛋白的细胞质定位。细胞分裂周期蛋白2(cdc2)结合或cdc2激酶活性并不需要细胞周期蛋白B1的磷酸化。然而,当CRS中的所有丝氨酸磷酸化位点突变为丙氨酸以消除磷酸化时,突变型细胞周期蛋白B1Ala会失活;将这些残基突变为谷氨酸以模拟磷酸丝氨酸可增强活性,这表明细胞周期蛋白B1的磷酸化对其生物学活性是必需的。在这里我们表明,通过附加一个核定位信号(NLS)或一个丝氨酸磷酸化位点突变为谷氨酸的第二个CRS结构域,可以使细胞周期蛋白B1Ala恢复生物学活性,而将丝氨酸磷酸化位点突变为丙氨酸的第二个CRS结构域与野生型细胞周期蛋白B1融合会使其失活。通过野生型NLS靶向细胞核的细胞周期蛋白B1Ala可检测到核组蛋白H1激酶活性,而突变型NLS则不能。这些结果表明核转位介导了细胞周期蛋白B1的生物学活性,并表明细胞周期蛋白B1的CRS结构域内的磷酸化在此过程中起调节作用。此外,鉴于细胞周期蛋白依赖性激酶具有相似的体外底物特异性,本研究为细胞周期蛋白亚细胞定位的控制在调节细胞周期蛋白依赖性激酶 - 细胞周期蛋白复合物的生物学活性中起关键作用这一假说提供了直接证据。