Suppr超能文献

Upregulation of alpha 9 integrin and tenascin during epithelial regeneration after debridement in the cornea.

作者信息

Stepp M A, Zhu L

机构信息

Department of Anatomy, George Washington University Medical Center, Washington, DC 20037, USA.

出版信息

J Histochem Cytochem. 1997 Feb;45(2):189-201. doi: 10.1177/002215549704500205.

Abstract

Stratified epithelia are exposed to abrasive forces and are required to respond rapidly to injury to minimize fluid loss and the risk for microbial infection. Healing involves a cell migratory phase to reestablish barrier function and cell proliferation to restratify the epithelium. Cell migration during re-epithelialization involves cell sliding, termed sheet movement, during which cells retain their cell-cell junctions while dynamically altering their shape and cell-substrate interactions to permit movement across the exposed wound bed. Proteins of the integrin family of receptor molecules modulate cell shape, cell migration, and signal transduction in many cell types. In epithelial cells, integrins of the beta 1 family have been implicated in regulating cell proliferation and differentiation, alpha 9 beta b1 is one of the newer members of the integrin beta family and has been recently shown to function as a tenascin receptor. Although little is known about its function in vivo, studies in developing mouse cornea and eyelid suggest that it may play a role in epithelial differentiation. Using a debridement wound model in the mouse cornea, we show in this study that (a) in response to small debridement wounds that close without cell proliferation, alpha 9 integrin protein and mRNA are not induced during migration but are induced during restratification, (b) larger debridement wounds that require cell proliferation to generate the cells necessary for sheet movement result in a dramatic induction of alpha 9 protein and its mRNA during both migration and restratification, and (c) tenascin, an alpha 9 beta 1 ligand, accumulates beneath epithelial cells during restratification but not during cell migration. Therefore, alpha 9 integrin protein production and tenascin accumulation are dynamically regulated in response to corneal epithelial injury.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验