Suppr超能文献

[钠钾ATP酶与肾氢钾ATP酶的分子及功能多样性]

[Molecular and functional diversity of NA,K-ATPase and renal H,K-ATPases].

作者信息

Jaisser F

机构信息

CNRS UMR, Institut Curie, Paris.

出版信息

Nephrologie. 1996;17(7):401-8.

PMID:9019667
Abstract

Potassium homeostasis is a determinant factor in the maintenance of many vital functions. Cell excitability, for instance, in striate and cardiac muscle, as well as in neurons, is dependent upon the ratio of potassium levels on either side of the plasmic membrane. Acute or chronic mechanisms of adjustment to disorders of bodily potassium balance exist in muscle, the kidney and distal colon. Na+K(+)-ATPase is involved in potassium transfers between the extracellular and intracellular compartments, in particular in muscle, enabling the creation of an appropriate trans-membrane K gradient. Na+K(+)-ATPase also participates in the development and maintenance of a transmembrane potassium electrochemical gradient necessary for potassium secretion processes in the kidney or distal colon. Colonic and renal H+K(+)-ATPases, so-called non-gastric H+K(+)-ATPases, are involved in the absorption of potassium from the gastrointestinal lumen or urinary fluid. They have an important role to play during chronic disorders, e.g. chronic bodily potassium depletion. Renal H+K(+)-ATPases and Na+K-ATPase are P-ATPases, consisting of a heterodimer of two alpha and beta sub-units. Several isoforms have been identified, on both a molecular and functional basis, for both the alpha and beta sub-unit. These two ATPases form part of the Na+K(+)-ATPase/H+K(+)-ATPase gene group. These pumps share many structural and functional similarities, but also particular functional specificities, probably involved in separate physiological roles for each isoform. Four isoforms of the alpha sub-unit and two isoforms of the beta sub-unit of Na+K(+)-ATPase have been identified. Sensitivity to ouabain, a Na+K(+)-ATPase inhibitor, differs according to the alpha isoform present in the alpha beta heterodimer. It is also involved in the catalytic cycle and influences pump potassium affinity. Several H+K(+)-ATPases have been identified from a molecular standpoint: gastric H+K(+)-ATPases and a colonic H+K(+)-ATPase found more recently. Recent studies have shown that both these H+K(+)-ATPases exist in the kidney. "Gastric" H+K(+)-ATPase is active along the entire length of the collecting tubule, in rats exposed to a normal potassium intake. In contrast, colonic H+K(+)-ATPase is active only in the cells of the external medullary collecting duct. This activity cannot be detected in animals on a standard diet but is very powerfully induced by potassium depletion. Activity is independent of steroidal status and of aldosterone in particular. Identification of a molecular homologue in the bladder of the amphibian Bufo marinus (the functional equivalent of the cortical collecting duct of mammals) has enabled the development of functional tests by activity in the oocyte of Xenopus laevis. The use this functional approach has shown that bladder H+K(+)-ATPase, just like that of rat distal colon, is sensitive to ouabain, an inhibitor considered up to now to be specific to Na+K(+)-ATPase. In contrast, this H+K(+)-ATPase shows little or no sensitivity to Sch 28080, a "classical" gastric H+K(+)-ATPase inhibitor. It thus seems that two H+K(+)-ATPases, different from a molecular standpoint, exist in rat kidney. They differ in terms of their cellular activity, regulation and functional properties. This is strongly suggestive of a specific role of each of them in potassium homeostasis, a role which remains to be defined. The use of genetically modified animals, as well as of physiological studies more focussed on this question, should provide clarification of the specific functional role of each isoform of the alpha and beta sub-units of renal H+K(+)-ATPases and Na+K(+)-ATPase. Extrapolation of these results to human pathophysiology is quite another challenge. Control of Na+K(+)-ATPase activity by endoouabain and its effects on cardiovascular pathophysiology must be identified. An H+K(+)-ATPase with molecular and functional characteristics similar to those of amphibian bladder and rat colon H+K(+)-A

摘要

钾稳态是维持许多重要功能的决定性因素。例如,在横纹肌、心肌以及神经元中,细胞兴奋性取决于质膜两侧的钾离子水平比例。肌肉、肾脏和远端结肠存在针对身体钾平衡紊乱的急性或慢性调节机制。钠钾ATP酶(Na+K(+)-ATPase)参与细胞外和细胞内区室之间的钾离子转运,特别是在肌肉中,有助于建立适当的跨膜钾离子梯度。钠钾ATP酶还参与肾脏或远端结肠钾分泌过程所必需的跨膜钾离子电化学梯度的形成和维持。结肠和肾脏的氢钾ATP酶(H+K(+)-ATPases),即所谓的非胃氢钾ATP酶,参与从胃肠道腔或尿液中吸收钾离子。它们在慢性疾病(如慢性身体钾缺乏)中发挥重要作用。肾脏氢钾ATP酶和钠钾ATP酶属于P-ATP酶,由两个α和β亚基组成的异二聚体。在分子和功能基础上,已鉴定出α和β亚基的几种同工型。这两种ATP酶是钠钾ATP酶/氢钾ATP酶基因组的一部分。这些泵具有许多结构和功能上的相似性,但也有特定的功能特异性,可能涉及每种同工型的不同生理作用。已鉴定出钠钾ATP酶α亚基的四种同工型和β亚基的两种同工型。对钠钾ATP酶抑制剂哇巴因的敏感性因αβ异二聚体中存在的α同工型而异。它还参与催化循环并影响泵对钾离子的亲和力。从分子角度已鉴定出几种氢钾ATP酶:胃氢钾ATP酶和最近发现的一种结肠氢钾ATP酶。最近的研究表明,这两种氢钾ATP酶都存在于肾脏中。在正常钾摄入的大鼠中,“胃”氢钾ATP酶在集合管的全长上都有活性。相比之下,结肠氢钾ATP酶仅在外髓集合管的细胞中有活性。在标准饮食的动物中无法检测到这种活性,但钾缺乏会强烈诱导其活性。这种活性与甾体状态无关,尤其与醛固酮无关。在两栖动物海蟾蜍膀胱(相当于哺乳动物皮质集合管的功能)中鉴定出分子同源物,使得能够通过非洲爪蟾卵母细胞中的活性进行功能测试。使用这种功能方法表明,膀胱氢钾ATP酶与大鼠远端结肠的氢钾ATP酶一样,对哇巴因敏感,哇巴因是一种迄今被认为对钠钾ATP酶具有特异性的抑制剂。相比之下,这种氢钾ATP酶对“经典”胃氢钾ATP酶抑制剂Sch 28080几乎没有或没有敏感性。因此,大鼠肾脏中似乎存在两种从分子角度来看不同 的氢钾ATP酶。它们在细胞活性、调节和功能特性方面存在差异。这强烈暗示它们各自在钾稳态中具有特定作用,该作用仍有待确定。使用基因改造动物以及更专注于这个问题的生理学研究,应该能够阐明肾脏氢钾ATP酶和钠钾ATP酶的α和β亚基各同工型的特定功能作用。将这些结果外推到人类病理生理学是另一项挑战。必须确定内源性哇巴因对钠钾ATP酶活性的控制及其对心血管病理生理学的影响。一种具有与两栖动物膀胱和大鼠结肠氢钾ATP酶相似分子和功能特征的氢钾ATP酶……

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验