Suppr超能文献

Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells.

作者信息

Ruhfus B, Tinel H, Kinne R K

机构信息

Max-Planck-Institut für molekulare Physiologie, Abteilung Epithelphysiologie, Postfach 10 26 64, D-44026 Dortmund, Germany.

出版信息

Pflugers Arch. 1996 Nov-Dec;433(1-2):35-41. doi: 10.1007/s004240050245.

Abstract

Hypotonic shock (change of osmolality from 600 mosmol to 300 mosmol by lowering NaCl concentration) increases the release of organic osmolytes from isolated inner medullary collecting duct (IMCD) cells in the following sequence: taurine > betaine > sorbitol > myo-inositol > glycerophosphorylcholine (GPC). The role of G-proteins in regulating the hypotonicity-induced efflux was analysed by exposing cells to various concentrations of a G-protein inhibitor, pertussis toxin (PTX; 20-200 ng/ml), and a Gialpha-protein stimulator, mastoparan (10-50 microM). PTX diminished the hypotonic release of sorbitol and betaine by 43.2+/-9. 5% and 32.2+/-7.8% (n = 5), respectively. Efflux of GPC, myo-inositol and taurine was not significantly altered. Mastoparan (10 microM) increased osmolyte release under isotonic conditions such that release of betaine was increased 3.8-fold and that of sorbitol 2.1-fold, while GPC, myo-inositol and taurine effluxes were only slightly augmented. Under hypotonic conditions, mastoparan stimulated betaine release (1.86+/-0.2-fold, n = 5) but not that of sorbitol. As tested in connection with sorbitol and betaine release, the effect of mastoparan was abolished by PTX, but not the A23187-evoked sorbitol release. Like mastoparan, arachidonic acid increased the release of sorbitol and betaine under isotonic conditions, but under hypotonic conditions it only increased the release of betaine. As to the role of intracellular Ca2+, hypotonic shock evoked an intracellular Ca2+ peak which could be prevented by PTX. Mastoparan increased intracellular Ca2+ under isotonic conditions, whether the extracellular Ca2+ concentration was low or high. The results indicate that G-proteins are involved in regulating sorbitol and betaine efflux from IMCD cells. The G-proteins regulating sorbitol release are probably involved in generating the proper intracellular Ca2+ signal. Betaine efflux, which is independent of intracellular Ca2+, might be regulated by a G-protein-stimulated release of arachidonic acid. Thus, probably several G-proteins are involved in controlling organic osmolyte efflux from IMCD cells.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验