Jasty M, Bragdon C R, Zalenski E, O'Connor D, Page A, Harris W H
Orthopaedic Department, Massachusetts General Hospital, Boston 02114, USA.
J Arthroplasty. 1997 Jan;12(1):106-13. doi: 10.1016/s0883-5403(97)90055-3.
The following questions were answered in this study: (1) What is the initial stability of proximally porous-coated canine femoral components? (2) Does bone ingrowth occur under these conditions? (3) Is the stability enhanced by tissue ingrowth in vivo? The stability of proximally porous-coated femoral components of canine total hip arthroplasties after 6 months to 2 years of in vivo service in dogs was measured in vitro using displacement transducers under loads simulating canine midstance. This was compared with the stability of identical components under the same loading conditions immediately after implantation in vitro in the contralateral femurs. The femurs were then sectioned and bone ingrowth into the porous coatings was quantified. The results showed that immediately after implantation the implants can move as much as 50 microns, but that the bone ingrowth into porous coatings of canine femoral components can occur even under such conditions. These data also suggested that the relative motion existing at the time of insertion can be reduced to very small amounts (< 10 microns) by bone ingrowth.