Chaires J B
Department of Biochemistry, University of Mississippi Medical Center, Jackson 39216-4505, USA.
Anticancer Drug Des. 1996 Dec;11(8):569-80.
Advances in polyelectrolyte theory have provided a simple and straightforward basis for dissecting the free energy of ligand binding to DNA into its polyelectrolyte and non-electrostatic contributions. Experimental determination of the ligand-DNA binding constant as a function of monovalent salt concentration is required to provide the quantity (delta lnK(obs)/delta ln[MX]), from which delta Gpe may be calculated. delta Gpe is the contribution to the observed binding free energy from the polyelectrolyte effect. delta Gpe is entropic in origin, and results from the release of DNA-bound cations upon ligand binding. The non-electrostatic free energy contribution, delta Gt, is independent of salt concentration, and reflects the contribution of hydrogen bonding and hydrophobic and van der Waals interactions to the stability of the ligand-DNA complex. When comparing the affinity of different ligands for DNA, it is delta Gt that should be compared, since the effect of ligand charge may then be removed from consideration.
聚电解质理论的进展为将配体与DNA结合的自由能分解为其聚电解质贡献和非静电贡献提供了一个简单直接的基础。需要通过实验测定配体 - DNA结合常数作为单价盐浓度的函数,以提供量(δlnK(obs)/δln[MX]),由此可以计算出δGpe。δGpe是聚电解质效应对观察到的结合自由能的贡献。δGpe起源于熵,是由于配体结合时DNA结合阳离子的释放所致。非静电自由能贡献δGt与盐浓度无关,反映了氢键、疏水作用和范德华相互作用对配体 - DNA复合物稳定性的贡献。在比较不同配体对DNA的亲和力时,应该比较的是δGt,因为这样就可以不考虑配体电荷的影响。