Suppr超能文献

鱿鱼巨轴突中钠通道门控构象变化的溶剂依赖性限速步骤。

Solvent-dependent rate-limiting steps in the conformational change of sodium channel gating in squid giant axon.

作者信息

Kukita F

机构信息

Ine Marine Laboratory, National Institute for Physiological Sciences, Ine, Kyoto, Japan.

出版信息

J Physiol. 1997 Jan 1;498 ( Pt 1)(Pt 1):109-33. doi: 10.1113/jphysiol.1997.sp021845.

Abstract
  1. The time course of sodium currents (INa) in squid giant axon was analysed using viscous non-electrolyte solutions on both sides of the axolemma. It slowed reversibly as the non-electrolyte concentration increased. The activation, deactivation (closing) and inactivation processes were slowed in a similar manner. The gating current of the sodium channel was also slowed to the same extent as the activation time constant. 2. The voltage dependence observed in a time constant vs. voltage relationship and a chord conductance vs. voltage relationship (activation curve), did not change significantly. 3. The gating kinetics have a similar temperature dependence in non-electrolyte solutions, showing that the basic gating mechanism did not change in these solutions and only a slight increase in the activation free energy was one of the main causes of slowing. 4. Eight non-electrolytes, formamide, ethylene glycol, glycerol, erythritol, glucose, sorbitol, sucrose and polyethylene glycol (mean molecular weight 600) were used. The amount of slowing was correlated with the gram concentration (g l-1) of non-electrolytes, but not with molar concentration (M) and solution osmolarity (osmol l-1). 5. The percentage changes of the time constant were expressed as a function of the relative change in solution viscosity, eta/eta0. The proportionality constants alpha in the relationship alpha (eta/eta0), and gamma in the relationship 100 (eta/eta0)gamma, obtained using different non-electrolytes, were close to 100% and 1, respectively. The simplest model to explain the results assumes that a slowing of a global conformational change is a consequence of sequential viscosity-dependent movements of local structures (viscosity model). 6. Values of alpha and gamma deviated frequently from those in an ideal case, i.e. 100% for alpha and 1 for gamma, and they scattered, having a tendency to decrease as a function of molecular weight. 7. The slowing was also expressed as an exponential function of the solution osmolarity. A predicted solute-inaccessible volume Va ranged (in nm3 per molecule) between 0.09 and 1.45. The value of Va increased as a logarithmic function of the molecular weight of the non-electrolyte. 8. This solute-inaccessible volume should be distributed in all hydrophilic parts of the sodium channel protein, but is not located in the channel conducting pore itself. The slowing of gating could be explained by a model in which a rate-limiting step is a hydration process that occurs after local small structural changes have exposed new, unhydrated faces (transient hydrated-states model). 9. Considering the opposite dependencies of parameters alpha (or gamma) and beta on the molecular weight, sodium channel gating is likely to reflect a combination of these two models, which are coupled in microscopic segment movements. We emphasize with this combination of models that fluctuating hydrophilic structures play an important role in determining time constants in the gating process.
摘要
  1. 利用轴膜两侧的粘性非电解质溶液分析了枪乌贼巨大轴突中钠电流(INa)的时程。随着非电解质浓度增加,其可逆减慢。激活、失活(关闭)和失活过程以类似方式减慢。钠通道的门控电流也减慢到与激活时间常数相同的程度。2. 在时间常数与电压关系以及弦电导与电压关系(激活曲线)中观察到的电压依赖性没有显著变化。3. 门控动力学在非电解质溶液中具有相似的温度依赖性,表明在这些溶液中基本门控机制没有改变,激活自由能的轻微增加是减慢的主要原因之一。4. 使用了八种非电解质,即甲酰胺、乙二醇、甘油、赤藓糖醇、葡萄糖、山梨醇、蔗糖和聚乙二醇(平均分子量600)。减慢程度与非电解质的克浓度(g l-1)相关,但与摩尔浓度(M)和溶液渗透压(osmol l-1)无关。5. 时间常数的百分比变化表示为溶液粘度相对变化eta/eta0的函数。使用不同非电解质获得的关系alpha(eta/eta0)中的比例常数alpha以及关系100(eta/eta0)gamma中的gamma分别接近100%和1。解释结果的最简单模型假定全局构象变化的减慢是局部结构顺序粘度依赖性运动的结果(粘度模型)。6. alpha和gamma的值经常偏离理想情况下的值,即alpha为100%,gamma为1,并且它们分散,有随分子量降低的趋势。7. 减慢也表示为溶液渗透压的指数函数。预测的溶质不可及体积Va(以每分子nm3为单位)在0.09至1.45之间。Va值作为非电解质分子量的对数函数增加。8. 该溶质不可及体积应分布在钠通道蛋白的所有亲水性部分,但不在通道传导孔本身中。门控减慢可以用一个模型来解释,其中限速步骤是在局部小结构变化暴露新的未水合表面后发生的水合过程(瞬态水合状态模型)。9. 考虑到参数alpha(或gamma)和beta对分子量的相反依赖性,钠通道门控可能反映了这两种模型的组合,它们在微观片段运动中耦合。我们强调通过这种模型组合,波动的亲水性结构在确定门控过程中的时间常数方面起着重要作用。

相似文献

5
Slowing of the time course of the excitation of squid giant axons in viscous solutions.
J Membr Biol. 1979 May 25;47(3):303-25. doi: 10.1007/BF01869083.

本文引用的文献

5
The kinetics of voltage-gated ion channels.电压门控离子通道的动力学
Q Rev Biophys. 1994 Dec;27(4):339-434. doi: 10.1017/s0033583500003097.
6
Voltage gating of ion channels.离子通道的电压门控
Q Rev Biophys. 1994 Feb;27(1):1-40. doi: 10.1017/s0033583500002894.
7
Translational and rotational diffusion of proteins.蛋白质的平移扩散和旋转扩散。
J Mol Biol. 1994 Feb 18;236(2):629-36. doi: 10.1006/jmbi.1994.1172.
8
Dynamics of proteins: elements and function.蛋白质动力学:要素与功能
Annu Rev Biochem. 1983;52:263-300. doi: 10.1146/annurev.bi.52.070183.001403.
9
Sodium channel gating: models, mimics, and modifiers.钠通道门控:模型、模拟物及调节剂
Annu Rev Biophys Bioeng. 1983;12:319-56. doi: 10.1146/annurev.bb.12.060183.001535.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验