Karagenç L, Cinnamon Y, Ginsburg M, Petitte J N
Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA.
Dev Genet. 1996;19(4):290-301. doi: 10.1002/(SICI)1520-6408(1996)19:4<290::AID-DVG2>3.0.CO;2-4.
The temporal and spatial pattern of segregation of the avian germline from the formation of the area pellucida to the beginning of primitive streak formation (stages VII-XIV, EG&K) was investigated using the culture of whole embryos and central and peripheral embryo fragments on vitelline membranes at stages VII-IX, immunohistological analysis of whole mount embryos and sections with monoclonal antibodies MC-480 against stage-specific embryonic antigen-1 (SSEA-1) and EMA-1, and with the culture of dispersed blastoderms at stages IX-XIV with and without on STO feeder layer. Whole embryos at intrauterine stages developed up to the formation of the primitive streak despite the absence of area pellucida expansion. Primordial germ cells (PGCs) appeared in the cultures of whole embryos and only in central fragments containing a partially formed area pellucida at stages VII-IX. When individual stage IX-XIV embryos were dispersed and cultured without a feeder layer, 25-45 PGCs/embryo were detected only with stage X-XIV, but not with stage IX blastoderms. However, the culture of dispersed cells from the area pellucida of stages IX-XIII on STO feeder layers yielded about 150 PGCs/embryo. The carbohydrate epitopes recognized by anti-SSEA-1 and EMA-1 first appeared at stage X on cells in association with polyingressing cells on the ventral surface of the epiblast and later on the dorsal surface of the hypoblast. The SSEA-1-positive hypoblast cells gave rise to chicken PGCs when cultured on a feeder layer of quail blastodermal cells. From these observations, we propose that the segregation and development of avian germline is a gradual, epigenetic process associated with the translocation of SSEA-1/EMA-1-positive cells from the ventral surface of the area pellucida at stage X to the dorsal side of the hypoblast at stages XI-XIV.
利用VII-IX期全胚胎、胚胎中央和外周片段在卵黄膜上的培养,对全胚进行免疫组织化学分析,以及使用抗阶段特异性胚胎抗原-1(SSEA-1)和EMA-1的单克隆抗体对切片进行分析,同时对IX-XIV期分散的胚盘在有或无STO饲养层的情况下进行培养,研究了从透明区形成到原条形成开始(EG&K分期的VII-XIV期)禽类生殖系分离的时空模式。尽管没有透明区扩张,子宫内阶段的全胚胎仍发育到原条形成。原始生殖细胞(PGC)出现在全胚胎培养物中,并且仅出现在VII-IX期含有部分形成的透明区的中央片段中。当将单个IX-XIV期胚胎分散并在没有饲养层的情况下培养时,仅在X-XIV期检测到每个胚胎有25-45个PGC,而在IX期胚盘中未检测到。然而,将IX-XIII期透明区的分散细胞在STO饲养层上培养,每个胚胎可产生约150个PGC。抗SSEA-1和EMA-1识别的碳水化合物表位首先在X期出现在与上胚层腹面多内陷细胞相关的细胞上,随后出现在下胚层的背面上。当在鹌鹑胚盘细胞饲养层上培养时,SSEA-1阳性的下胚层细胞产生鸡PGC。基于这些观察结果,我们提出禽类生殖系的分离和发育是一个渐进的表观遗传过程,与SSEA-1/EMA-1阳性细胞从X期透明区腹面到XI-XIV期下胚层背面的移位有关。