Suppr超能文献

临床酶学方法的评估:一种概率方法。

Assessment of clinical enzyme methodology: a probabilistic approach.

作者信息

Henderson A R

机构信息

Department of Biochemistry, University of Western Ontario, London, Canada.

出版信息

Clin Chim Acta. 1997 Jan 3;257(1):25-40. doi: 10.1016/s0009-8981(96)06432-7.

Abstract

A number of techniques are available to assess the clinical value of enzyme methodologies including regression and discriminant analyses, expert systems, neural networks, and probabilistic. Each has its adherents but the probabilistic approach appears to be the most commonly used technique. This approach uses the fourfold contingency table that categorises subjects by both the presence or absence of the target disease-as defined by a gold standard test- and by a test result being above or below a chosen decision threshold. From this classification can be defined the test's sensitivity and specificity. By altering the decision threshold across the entire range of test values a series of sensitivity:specificity pairs can be tabulated. These may be plotted as 1-specificity (or false positive rate or fraction) versus sensitivity (or true positive rate or fraction) to create a receiver operator characteristic (ROC) curve. ROC curves can provide the accuracy of the test (the area under the curve with associated confidence intervals), the rule-in and rule-out decision thresholds, and the clinical power of the test (likelihood ratio). However, a review of three years' publications in a peer-reviewed journal indicated that much of this essential data is usually absent. It is argued that such publications should include the decision thresholds used, the area under the curve and its standard error, a statistical assessment of the difference between two or more ROC plots, the rule-in and rule-out decision thresholds (indicating if these change with time after the onset of disease), and the relevant likelihood ratios.

摘要

有多种技术可用于评估酶学方法的临床价值,包括回归分析、判别分析、专家系统、神经网络和概率分析。每种方法都有其支持者,但概率分析方法似乎是最常用的技术。这种方法使用四格表,根据金标准测试定义的目标疾病的有无以及测试结果高于或低于选定的决策阈值对受试者进行分类。由此分类可以定义测试的敏感性和特异性。通过在整个测试值范围内改变决策阈值,可以列出一系列敏感性与特异性的配对。这些可以绘制为1-特异性(或假阳性率或比例)对敏感性(或真阳性率或比例),以创建受试者操作特征(ROC)曲线。ROC曲线可以提供测试的准确性(曲线下面积及相关置信区间)、纳入和排除决策阈值以及测试的临床效能(似然比)。然而,对一份同行评审期刊三年发表文章的回顾表明,这些重要数据大多缺失。有人认为,此类出版物应包括所使用的决策阈值、曲线下面积及其标准误差、对两个或多个ROC曲线之间差异的统计评估、纳入和排除决策阈值(表明这些阈值是否随疾病发作后的时间而变化)以及相关的似然比。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验