Hecht R, Happel R, Schuster P, Stadler P F
Institut für Theoretische Chemie, Universität Wien, Vienna, Austria.
Math Biosci. 1997 Feb;140(1):33-74. doi: 10.1016/s0025-5564(96)00152-6.
A class of autocatalytic reaction networks based on template-dependent replication and specific catalysis is considered. Trimolecular "elementary steps" of simple replicator dynamics are resolved into two consecutive irreversible reactions. The extreme cases, competition for common resources and hypercycle-like cooperative feedback, were analyzed in some detail. Although the dynamics of the extended networks resembles corresponding replicator dynamics in general, there are significant differences. Most notably, the interior fixed points in the cooperative model turned out to be asymptotically stable for an arbitrary number of species, whereas simple replicator dynamic predicts an asymptotically stable periodic orbit fixed for four species and fewer and a stable periodic orbit for all other cases.
考虑了一类基于模板依赖性复制和特异性催化的自催化反应网络。简单复制器动力学的三分子“基本步骤”被分解为两个连续的不可逆反应。对极端情况,即对共同资源的竞争和类超循环合作反馈进行了较为详细的分析。尽管扩展网络的动力学总体上类似于相应的复制器动力学,但仍存在显著差异。最值得注意的是,合作模型中的内部不动点对于任意数量的物种都是渐近稳定的,而简单复制器动力学预测,对于四种及更少的物种,存在一个渐近稳定的周期轨道不动点,对于所有其他情况,则存在一个稳定的周期轨道。