Suppr超能文献

自催化反应网络中的突变。基于微扰理论的分析。

Mutation in autocatalytic reaction networks. An analysis based on perturbation theory.

作者信息

Stadler P F, Schuster P

机构信息

Universität Wien, Institut für Theoretische Chemie, Osterreich.

出版信息

J Math Biol. 1992;30(6):597-631. doi: 10.1007/BF00948894.

Abstract

A class of kinetic equations describing catalysed and template induced replication, and mutation is introduced. This ODE in its most general form is split into two vector fields, a replication and a mutation field. The mutation field is considered as a perturbation of the replicator equation. The perturbation expansion is a Taylor series in a mutation parameter lambda. First, second and higher order contributions are computed by means of the conventional Rayleigh-Schrödinger approach. Qualitative shift in the positions of rest points and limit cycles on the boundary of the physically meaningful part of concentration space are predicted from flow topologies. The results of the topological analysis are summarized in two theorems which turned out to be useful in applications: the rest point migration theorem (RPM) and the limit cycle migration theorem (LCM). Quantitative expressions for the shifts of rest points are computed directly from the perturbation expansion. The concept is applied to a collection of selected examples from biophysical chemistry and biology.

摘要

引入了一类描述催化和模板诱导复制及突变的动力学方程。这个常微分方程的最一般形式被分解为两个向量场,一个复制场和一个突变场。突变场被视为复制者方程的微扰。微扰展开是关于突变参数λ的泰勒级数。通过传统的瑞利 - 薛定谔方法计算一阶、二阶及更高阶贡献。根据流拓扑预测浓度空间物理有意义部分边界上驻点和极限环位置的定性变化。拓扑分析的结果总结在两个定理中,这两个定理在应用中被证明是有用的:驻点迁移定理(RPM)和极限环迁移定理(LCM)。驻点位移的定量表达式直接从微扰展开计算得出。该概念应用于生物物理化学和生物学中的一系列选定示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验