Suppr超能文献

Proton-translocation by membrane-bound NADH:ubiquinone-oxidoreductase (complex I) through redox-gated ligand conduction.

作者信息

Brandt U

机构信息

Universitätsklinikum Frankfurt, Zentrum der Biologischen Chemie, Germany.

出版信息

Biochim Biophys Acta. 1997 Jan 16;1318(1-2):79-91. doi: 10.1016/s0005-2728(96)00141-7.

Abstract

For the catalytic mechanism of proton-translocating NADH-dehydrogenase (complex I, EC 1.6.99.3) a number of hypothetical models have been proposed over the last three decades. These models are discussed in the light of recent substantial progress on the structure and function of this very complicated multiprotein complex. Only the high-potential iron-sulfur center N-2 and ubiquinone seem to contribute to the proton-translocating machinery of complex I: Based on the pH dependent midpoint potential of iron-sulfur cluster N-2 and the physical properties of ubiquinone intermediates a novel mechanism is proposed. The model builds on a series of defined chemical reactions taking place at three different ubiquinone-binding sites. Therefore, some aspects of this redox-gated ligand conduction mechanism are reminiscent to the proton-motive Q-cycle. However, its central feature is the abstraction of a proton from ubihydroquinone by a redox-Bohr group associated with iron-sulfur cluster N-2. Thus, in the proposed mechanism proton translocation is driven by a direct linkage between redox dependent protonation of iron-sulfur cluster N-2 and the redox chemistry of ubiquinone.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验