Inukai T, Inaba T, Yoshihara T, Look A T
Department of Experimental Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
Mol Cell Biol. 1997 Mar;17(3):1417-24. doi: 10.1128/MCB.17.3.1417.
The E2A-HLF fusion gene, created by the t(17;19)(q22;p13) chromosomal translocation in pro-B lymphocytes, encodes an oncogenic protein in which the E2A trans-activation domain is linked to the DNA-binding and protein dimerization domain of hepatic leukemia factor (HLF), a member of the proline- and acidic amino acid-rich (PAR) subfamily of bZIP transcription factors. This fusion product binds to its DNA recognition site not only as a homodimer but also as a heterodimer with HLF and two other members of the PAR bZIP subfamily, thyrotroph embryonic factor (TEF) and albumin promoter D-box binding protein (DBP). Thus, E2A-HLF could transform cells by direct regulation of downstream target genes, acting through homodimeric or heterodimeric complexes, or by sequestering normal PAR proteins into nonfunctional heterocomplexes (dominant-negative interference). To distinguish among these models, we constructed mutant E2A-HLF proteins in which the leucine zipper domain of HLF was extended by one helical turn or altered in critical charged amino acids, enabling the chimera to bind to DNA as a homodimer but not as a heterodimer with HLF or other PAR proteins. When introduced into NIH 3T3 cells in a zinc-inducible vector, each of these mutants induced anchorage-independent growth as efficiently as unaltered E2A-HLF, indicating that the chimeric oncoprotein can transform cells in its homodimeric form. Transformation also depended on an intact E2A activator region, providing further support for a gain-of-function contribution to oncogenesis rather than one based on a dominant-interfering or dominant-negative mechanism. Thus, the tumorigenic effects of E2A-HLF and its mutant forms in NIH 3T3 cells favor a straightforward model in which E2A-HLF homodimers bind directly to promoter/enhancer elements of downstream target genes and alter their patterns of expression in early B-cell progenitors.
E2A-HLF融合基因由前B淋巴细胞中的t(17;19)(q22;p13)染色体易位产生,编码一种致癌蛋白,其中E2A反式激活结构域与肝白血病因子(HLF)的DNA结合和蛋白质二聚化结构域相连,HLF是bZIP转录因子的富含脯氨酸和酸性氨基酸(PAR)亚家族的成员。这种融合产物不仅以同源二聚体形式结合其DNA识别位点,还与HLF以及PAR bZIP亚家族的其他两个成员促甲状腺素胚胎因子(TEF)和白蛋白启动子D盒结合蛋白(DBP)以异源二聚体形式结合。因此,E2A-HLF可通过直接调节下游靶基因来转化细胞,通过同源二聚体或异源二聚体复合物发挥作用,或通过将正常PAR蛋白隔离到无功能的异源复合物中(显性负性干扰)。为了区分这些模型,我们构建了突变型E2A-HLF蛋白,其中HLF的亮氨酸拉链结构域延长了一个螺旋圈或在关键的带电荷氨基酸处发生改变,使嵌合体能够以同源二聚体形式结合DNA,但不能与HLF或其他PAR蛋白形成异源二聚体。当通过锌诱导载体导入NIH 3T3细胞时,这些突变体中的每一个都能像未改变的E2A-HLF一样有效地诱导不依赖贴壁生长,这表明嵌合致癌蛋白可以以其同源二聚体形式转化细胞。转化也依赖于完整的E2A激活区,这为功能获得对肿瘤发生的贡献提供了进一步支持,而不是基于显性干扰或显性负性机制。因此,E2A-HLF及其突变形式在NIH 3T3细胞中的致瘤作用支持一个简单的模型,即E2A-HLF同源二聚体直接结合下游靶基因的启动子/增强子元件,并改变它们在早期B细胞祖细胞中的表达模式。