Suppr超能文献

Improvement of culture conditions to overproduce beta-galactosidase from Escherichia coli in Bacillus subtilis.

作者信息

Martínez A, Ramírez O T, Valle F

机构信息

Dept. de Microbiología Molecular, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

出版信息

Appl Microbiol Biotechnol. 1997 Jan;47(1):40-5. doi: 10.1007/s002530050885.

Abstract

The effect of some culture variables in the production of beta-galactosidase from Escherichia coli in Bacillus subtilis was evaluated. The lacZ gene was expressed in B. subtilis using the regulatory region of the subtilisin gene aprE. The host contained also the hpr2 and degU32 mutations, which are known to overexpress the aprE gene. We found that, when this overproducing B. subtilis strain was grown in mineral medium supplemented with glucose (MMG), beta-galactosidase production was partially growth-associated, as 40%-60% of the maximum enzyme activity was produced before the onset of the stationary phase. In contrast, when a complex medium was used, beta-galactosidase was produced only at low levels during vegetative growth, whereas it accumulated to high levels during early stationary phase. Compared with the results obtained in complex media, a 20% increase in specific beta-galactosidase activity in MMG supplemented with 11.6 g/l glucose was obtained. On the 1-1 fermenter scale, a three-fold increase in volumetric beta-galactosidase activity was obtained when the glucose concentration was varied from 11 g/l to 26 g/l. In addition, glucose feeding during the stationary phase resulted in a twofold increase in volumetric enzyme activity as cellular lysis was prevented. Finally, we showed that oxygen uptake and carbon dioxide evolution rates can be used for on-line determination of the onset of stationary phase, glucose depletion and biomass concentration.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验