Suppr超能文献

Redistribution of intracellular Ca2+ stores after beta-adrenergic stimulation of rat tail artery SMC.

作者信息

Miyashita Y, Sollott S J, Cheng L, Kinsella J L, Koh E, Lakatta E G, Froehlich J P

机构信息

Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA.

出版信息

Am J Physiol. 1997 Jan;272(1 Pt 2):H244-55. doi: 10.1152/ajpheart.1997.272.1.H244.

Abstract

beta-Adrenergic agonists induce the relaxation of vascular smooth muscle by a mechanism that activates the extrusion of Na+ and Ca2+ from the cell. A primary source of contractile Ca2+ resides in the sarcoplasmic reticulum (SR), which releases Ca2+ in response to vasoactive agents through inositol trisphosphate-mediated channels. To determine if smooth muscle relaxation induced by beta 2-adrenergic agonists involves the redistribution of intracellular Ca2+, we studied the effects of isoproterenol (Iso) on freshly isolated, single rat tail artery smooth muscle cells loaded with fura 2, using digital ratiometric fluorescence imaging. Stimulation with 1 microM phenylephrine (PE) or norepinephrine produced phasic and tonic increases in cytoplasmic intracellular Ca2+ concentration ([Ca2+]i) associated associated with cell shortening. Exposure to caffeine and to Ca2(+)-free solutions eliminated the phasic and tonic components, respectively, from the Ca2+ signal. Intermittent superfusion with PE or caffeine was used to evaluate SR Ca2+ stores after stimulation by Iso. Exposure to 1 microM Iso induced a time-dependent decrease in PE-activated peak and tonic [Ca2+]i without any change in resting [Ca2+]i. Intermittent stimulation with 10 mM caffeine revealed a similar decline in peak [Ca2+]i, indicating Iso-dependent depletion of SR Ca2+ stores. The Ca2+ that remained in the SR after prolonged exposure to Iso (30% of the pre-Iso level by 80 min at 22 degrees C) failed to elicit a contractile response. The cells, perfused with a Na(+)- and Ca2(+)-free medium to block Na+/ Ca2+ exchange, prevented depletion of the SR Ca2+ stores by Iso. We propose that Iso inhibits agonist-mediated Ca2+ influx through sarcolemmal Ca2+ channels and activates Ca2+ redistribution from storage sites in the SR to the extracellular compartment by a mechanism that involves Na+/Ca2+ exchange. These combined effects of Iso facilitate smooth muscle relaxation (and reduce vascular tonus) by reducing the increase in cytoplasmic Ca2+ evoked by vasoconstrictors.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验