Conway G S
Department of Medicine, University College London Medical School, Middlesex Hospital, UK.
Clin Endocrinol (Oxf). 1996 Dec;45(6):657-63. doi: 10.1046/j.1365-2265.1996.8680879.x.
Raised activity of the LH axis caused by activating mutations of LH receptor gene presents with precocious puberty in boys, analogous to the presentation of LH secreting pituitary adenomas (Faggiano et al., 1983; Ambrosi et al., 1990). LH "hyperactivity' in females appears to have no effect. Hyperactivity of the FSH axis caused by activating mutations of the FSH receptor gene might parallel the presentation of FSH secreting pituitary adenomas with Sertoli cell hypertrophy in men (Heseltine et al., 1989) or reversible premature ovarian failure in women (Moses et al., 1986; Okuda et al., 1989). Indeed the first such case to be described is a male who maintained testicular volume and fertility in the absence of gonadotrophins (Gromoll et al., 1996). Female precocious puberty may require hyperactivity of both gonadotrophin axes because of the "two-cell' arrangement required for ovarian oestrogen production. Mutations of the Gs alpha-subunit gene can mimic this situation in some women with the McCune-Albright syndrome (Malchoff et al., 1994). Lack of LH activity caused by defects in the LH beta molecule causes infertility in men and that resulting from inactivating mutations of the LH receptor gene causes Leydig cell agenesis in men while ovarian development in females is relatively normal. Lack of FSH activity caused by defects in the FSH beta caused infertility in a female, and that caused by inactivating mutations of the FSH receptor gene causes ovarian dysgenesis in women but only variable depression of spermatogenesis in men. Incidentally, this categorization of reproductive disorders may also be applied to the TSH axis. Pituitary adenomas and activating mutations of the TSH receptor gene (Parma et al., 1993) cause hyperthyroidism and TSH beta gene defects (Hayashizaki et al., 1989) and inactivating mutations of the TSH receptor gene (Sunthornthepvarakul et al., 1995) cause hypothyroidism. To complete the analogy with thyroid disorders, it is curious that despite structural similarities with the TSH receptor, neither LH nor FSH receptor autoantibodies have a prominent role in ovarian pathophysiology (Moncayo et al., 1989; Van Weissenbruch et al., 1991; Simoni et al., 1993). Complete gonadotrophin resistance is likely to be very rare, however, so what are we likely to find in partial gonadotrophin resistance? Might the "resistant ovary syndrome' come right in the end, with corresponding minor FSH receptor mutations? Experience with insulin and androgen resistance syndromes suggests that such a scenario is unlikely. Insulin receptor gene mutations are found in extreme Type A insulin resistance but not in moderate forms of insulin resistance (O'Rahilly et al., 1991). Androgen receptor gene mutations are found in nearly all cases of complete androgen insensitivity but rarely in partial forms (Patterson et al., 1994). Mild resistance to hormone action is rarely detectable in relatives who are heterozygous for receptor mutations which are inherited in a recessive pattern. It seems unlikely therefore, that individuals heterozygous for inactivating receptor mutations will manifest symptoms of reproductive disorders and account for common conditions. Thus, while mutation analysis provides new insights into the gender specific role of the gonadotrophins the cause of early gonadal failure in the majority of individuals remains a mystery.
促黄体生成素(LH)受体基因激活突变导致的LH轴活性升高,在男孩中表现为性早熟,类似于分泌LH的垂体腺瘤的表现(法贾诺等人,1983年;安布罗西等人,1990年)。女性中的LH“活性亢进”似乎没有影响。促卵泡生成素(FSH)受体基因激活突变导致的FSH轴活性亢进,可能与男性中分泌FSH的垂体腺瘤伴支持细胞肥大(赫塞尔廷等人,1989年)或女性中可逆性卵巢早衰(摩西等人,1986年;奥久田等人,1989年)的表现相似。事实上,首例此类病例是一名男性,其在缺乏促性腺激素的情况下维持了睾丸体积和生育能力(格罗莫尔等人,1996年)。由于卵巢雌激素产生需要“双双双双细胞”结构,女性性早熟可能需要两个促性腺激素轴都活性亢进。Gsα亚基基因突变在一些患有麦库恩-奥尔布赖特综合征的女性中可模拟这种情况(马尔乔夫等人,1994年)。LHβ分子缺陷导致的LH活性缺乏会导致男性不育,LH受体基因失活突变导致的LH活性缺乏会导致男性睾丸间质细胞发育不全,而女性的卵巢发育相对正常。FSHβ缺陷导致的FSH活性缺乏会导致女性不育,FSH受体基因失活突变导致的FSH活性缺乏会导致女性卵巢发育不全,但只会使男性精子发生受到不同程度的抑制。顺便说一下,这种生殖障碍的分类也可能适用于促甲状腺激素(TSH)轴。垂体腺瘤和TSH受体基因激活突变(帕尔马等人,1993年)会导致甲状腺功能亢进,TSHβ基因缺陷(林崎等人,1989年)和TSH受体基因失活突变(孙通特普瓦拉库尔等人,1995年)会导致甲状腺功能减退。为了与甲状腺疾病进行类比,奇怪的是,尽管LH和FSH受体与TSH受体在结构上有相似之处,但LH和FSH受体自身抗体在卵巢病理生理学中都没有显著作用(蒙卡约等人,1989年;范韦森布鲁赫等人,1991年;西蒙尼等人,1993年)。然而,完全性促性腺激素抵抗可能非常罕见,那么在部分性促性腺激素抵抗中我们可能会发现什么呢?“抵抗卵巢综合征”最终会被证实吗,会伴有相应的轻微FSH受体突变吗?胰岛素抵抗和雄激素抵抗综合征的经验表明这种情况不太可能。在极端A型胰岛素抵抗中发现了胰岛素受体基因突变,但在中度胰岛素抵抗形式中未发现(奥赖利等人,1991年)。在几乎所有完全性雄激素不敏感病例中都发现了雄激素受体基因突变,但在部分性病例中很少见(帕特森等人,1994年)。对于以隐性方式遗传的受体突变杂合的亲属,很少能检测到对激素作用的轻度抵抗。因此,似乎不太可能是受体失活突变杂合的个体表现出生殖障碍症状并导致常见疾病。所以,虽然突变分析为促性腺激素的性别特异性作用提供了新的见解,但大多数个体早期性腺功能衰竭的原因仍然是个谜。