Suppr超能文献

数量性状的传递不平衡检验。

Transmission-disequilibrium tests for quantitative traits.

作者信息

Allison D B

机构信息

Obesity Research Center, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA.

出版信息

Am J Hum Genet. 1997 Mar;60(3):676-90.

Abstract

The transmission-disequilibrium test (TDT) of Spielman et al. is a family-based linkage-disequilibrium test that offers a powerful way to test for linkage between alleles and phenotypes that is either causal (i.e., the marker locus is the disease/trait allele) or due to linkage disequilibrium. The TDT is equivalent to a randomized experiment and, therefore, is resistant to confounding. When the marker is extremely close to the disease locus or is the disease locus itself, tests such as the TDT can be far more powerful than conventional linkage tests. To date, the TDT and most other family-based association tests have been applied only to dichotomous traits. This paper develops five TDT-type tests for use with quantitative traits. These tests accommodate either unselected sampling or sampling based on selection of phenotypically extreme offspring. Power calculations are provided and show that, when a candidate gene is available (1) these TDT-type tests are at least an order of magnitude more efficient than two common sib-pair tests of linkage; (2) extreme sampling results in substantial increases in power; and (3) if the most extreme 20% of the phenotypic distribution is selectively sampled, across a wide variety of plausible genetic models, quantitative-trait loci explaining as little as 5% of the phenotypic variation can be detected at the .0001 alpha level with <300 observations.

摘要

斯皮尔曼等人提出的传递不平衡检验(TDT)是一种基于家系的连锁不平衡检验方法,它为检验等位基因与表型之间的连锁关系提供了一种强大的手段,这种连锁关系要么是因果关系(即标记位点就是疾病/性状等位基因),要么是由于连锁不平衡导致的。TDT等同于一项随机试验,因此能够抵御混杂因素的影响。当标记与疾病位点极为接近或者标记本身就是疾病位点时,诸如TDT这样的检验可能比传统的连锁检验更具效力。到目前为止,TDT以及大多数其他基于家系的关联检验仅应用于二分性状。本文开发了五种用于数量性状的TDT类检验。这些检验适用于非选择性抽样或基于对表型极端后代的选择进行抽样。文中给出了功效计算结果,结果表明,当有候选基因时:(1)这些TDT类检验比两种常见的同胞对连锁检验至少高效一个数量级;(2)极端抽样会使功效大幅提高;(3)如果对表型分布中最极端的20%进行选择性抽样,在各种合理的遗传模型下,在α水平为0.0001且观察次数小于300次的情况下,能够检测到解释低至5%表型变异的数量性状位点。

相似文献

1
2
The future is now - will the real disease gene please stand up?
Hum Hered. 2008;66(2):127-35. doi: 10.1159/000119112. Epub 2008 Mar 31.
4
Transmission/disequilibrium tests for quantitative traits.
Genet Epidemiol. 2001 Jan;20(1):57-74. doi: 10.1002/1098-2272(200101)20:1<57::AID-GEPI6>3.0.CO;2-5.
5
TDT statistics for mapping quantitative trait loci.
Ann Hum Genet. 1998 Sep;62(Pt 5):431-52. doi: 10.1046/j.1469-1809.1998.6250431.x.
6
Linkage and association studies of QTL for nuclear families by mixed models.
Biostatistics. 2003 Jan;4(1):75-95. doi: 10.1093/biostatistics/4.1.75.
7
Transmission/disequilibrium tests for quantitative traits.
Ann Hum Genet. 2000 Nov;64(Pt 6):555-65. doi: 10.1017/s000348000000840x.
8
An extended transmission/disequilibrium test (TDT) for multi-allele marker loci.
Ann Hum Genet. 1995 Jul;59(3):323-36. doi: 10.1111/j.1469-1809.1995.tb00751.x.
9
Increase in power of transmission-disequilibrium tests for quantitative traits.
Genet Epidemiol. 2002 Oct;23(3):234-44. doi: 10.1002/gepi.10180.

引用本文的文献

1
GWAS Procedures for Gene Mapping in Diverse Populations With Complex Structures.
Bio Protoc. 2025 Apr 20;15(8):e5284. doi: 10.21769/BioProtoc.5284.
2
Identifying causal genotype-phenotype relationships for population-sampled parent-child trios.
bioRxiv. 2024 Dec 11:2024.12.10.627752. doi: 10.1101/2024.12.10.627752.
3
Causal interpretations of family GWAS in the presence of heterogeneous effects.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2401379121. doi: 10.1073/pnas.2401379121. Epub 2024 Sep 13.
4
Interpreting population- and family-based genome-wide association studies in the presence of confounding.
PLoS Biol. 2024 Apr 11;22(4):e3002511. doi: 10.1371/journal.pbio.3002511. eCollection 2024 Apr.
5
How do stochastic processes and genetic threshold effects explain incomplete penetrance and inform causal disease mechanisms?
Philos Trans R Soc Lond B Biol Sci. 2024 Apr 22;379(1900):20230045. doi: 10.1098/rstb.2023.0045. Epub 2024 Mar 4.
6
Causal interpretations of family GWAS in the presence of heterogeneous effects.
bioRxiv. 2023 Nov 16:2023.11.13.566950. doi: 10.1101/2023.11.13.566950.
7
Conditioning on parental mating types can reduce necessary assumptions for Mendelian randomization.
Front Genet. 2023 Mar 6;14:1014014. doi: 10.3389/fgene.2023.1014014. eCollection 2023.
8
Interpreting population and family-based genome-wide association studies in the presence of confounding.
bioRxiv. 2023 Feb 27:2023.02.26.530052. doi: 10.1101/2023.02.26.530052.
9
Candidate-gene association analysis for a continuous phenotype with a spike at zero using parent-offspring trios.
J Appl Stat. 2019 Dec 19;47(11):2066-2080. doi: 10.1080/02664763.2019.1704226. eCollection 2020.

本文引用的文献

1
Multivariate multipoint linkage analysis of quantitative trait loci.
Behav Genet. 1996 Sep;26(5):519-25. doi: 10.1007/BF02359757.
2
The future of genetic studies of complex human diseases.
Science. 1996 Sep 13;273(5281):1516-7. doi: 10.1126/science.273.5281.1516.
4
Multivariate genetic analysis of an oligogenic disease.
Genet Epidemiol. 1995;12(6):801-6. doi: 10.1002/gepi.1370120645.
7
Using multivariate genetic modeling to detect pleiotropic quantitative trait loci.
Behav Genet. 1996 Mar;26(2):161-6. doi: 10.1007/BF02359893.
10
A comparison of univariate and multivariate tests for genetic linkage.
Genet Epidemiol. 1993;10(6):671-6. doi: 10.1002/gepi.1370100657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验