Hacisalihoglu Ayse, Jongejan Jaap A, Duine Johannis A
Department of Microbiology and Enzymology, Delft University of Technology,Julianalaan 67, 2628 BC Delft,The Netherlands.
Microbiology (Reading). 1997 Feb;143 ( Pt 2):505-512. doi: 10.1099/00221287-143-2-505.
The bacteria Klebsiella oxytoca LMD 72.65 (ATCC 8724), Arthrobacter P1 LMD 81.60 (NCIB 11625), Paracoccus versutus LMD 80.62 (ATCC 25364), Escherichia coli W LMD 50.28 (ATCC 9637), E. coli K12 LMD 93.68, Pseudomonas aeruginosa PAO1 LMD 89.1 (ATCC 17933) and Pseudomonas putida LMD 68.20 (ATCC 12633) utilized primary amines as a carbon and energy source, although the range of amines accepted varied from organism to organism. The Gram-negative bacteria K. oxytoca and E. coli as well as the Gram-positive methylotroph Arthrobacter P1 used an oxidase whereas the pseudomonads and the Gram-negative methylotroph Paracoccus versutus used a dehydrogenase for amine oxidation. K. oxytoca utilized several primary amines but showed a preference for those containing a phenyl group moiety. Only a single oxidase was used for oxidation of the amines. After purification, the following characteristics of the enzyme indicated that it belonged to the group of copper-quinoprotein amine oxidase (EC 1.4.3.6): the molecular mass (172,000 Da) of the homodimeric protein; the UV/visible and EPR spectra of isolated and p-nitrophenylhydrazine-inhibited enzyme; the presence and the content of copper and topaquinone (TPQ). The amine oxidase appeared to be soluble and localized in the periplasm, but catalase and NAD-dependent aromatic aldehyde dehydrogenase, enzymes catalysing the conversion of its reaction products, were found in the cytoplasm. From the amino acid sequence of the N-terminal part as well as that of a purified peptide, it appears that K. oxytoca produces a copper-quinoprotein oxidase which is very similar to that found in other Enterobacteriaceae.
产酸克雷伯菌LMD 72.65(ATCC 8724)、节杆菌P1 LMD 81.60(NCIB 11625)、副球菌LMD 80.62(ATCC 25364)、大肠杆菌W LMD 50.28(ATCC 9637)、大肠杆菌K12 LMD 93.68、铜绿假单胞菌PAO1 LMD 89.1(ATCC 17933)和恶臭假单胞菌LMD 68.20(ATCC 12633)可利用伯胺作为碳源和能源,尽管不同菌株所接受的胺类范围有所不同。革兰氏阴性菌产酸克雷伯菌和大肠杆菌以及革兰氏阳性甲基营养菌节杆菌P1使用氧化酶进行胺氧化,而假单胞菌属和革兰氏阴性甲基营养菌副球菌则使用脱氢酶进行胺氧化。产酸克雷伯菌可利用多种伯胺,但对含有苯基部分的胺表现出偏好。仅一种氧化酶用于胺的氧化。纯化后,该酶的以下特性表明它属于铜醌蛋白胺氧化酶(EC 1.4.3.6)组:同二聚体蛋白的分子量(172,000 Da);分离的酶和对硝基苯肼抑制的酶的紫外/可见光谱和电子顺磁共振光谱;铜和对苯二酚醌(TPQ)的存在及含量。该胺氧化酶似乎是可溶的且定位于周质中,但在细胞质中发现了过氧化氢酶和NAD依赖性芳香醛脱氢酶,这两种酶催化其反应产物的转化。从N端部分的氨基酸序列以及纯化肽的氨基酸序列来看,产酸克雷伯菌似乎产生一种铜醌蛋白氧化酶,该酶与其他肠杆菌科细菌中发现的氧化酶非常相似。