Suppr超能文献

Critical role of the second stirrup region of the TATA-binding protein for transcriptional activation both in yeast and human.

作者信息

Kim T K, Roeder R G

机构信息

Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA.

出版信息

J Biol Chem. 1997 Mar 14;272(11):7540-5. doi: 10.1074/jbc.272.11.7540.

Abstract

We previously identified three TATA-binding protein (TBP) point mutations (L114K, L189K, and K211L) that have severe effects on transcriptional activation by acidic activators, but no effect on basal transcription, in a yeast-derived TBP-dependent in vitro transcription system (Kim, T. K., Hashimoto, S., Kelleher, R. J., III, Flanagan, P. M., Kornberg, R. D., Horikoshi, M., and Roeder, R. G. (1994) Nature 369, 252-255). These activation defects were also demonstrated in vivo in yeast cells (Lee, M., and Struhl, K. (1995) Mol. Cell. Biol. 15, 5461-5469). Here, the transcriptional activities of these and other TBP mutations were examined in human by both in vitro and in vivo assays. Mutations L189K and E188K, which lie in the second stirrup region of TBP, show defective activation by acidic activators both in yeast and human. Somewhat surprisingly, mutations L114K and K211L have almost no demonstrable effect on activation by acidic activators in human, in contrast to their severe effects on defective activator responses in yeast. The implications of these results for TBP structure and function are discussed.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验