Suppr超能文献

叠氮化钠对黄孢原毛平革菌木质素过氧化物酶失活作用的进一步研究

Further studies on the inactivation by sodium azide of lignin peroxidase from Phanerochaete chrysosporium.

作者信息

Tatarko M, Bumpus J A

机构信息

Department of Biological Sciences, University of Notre Dame, Indiana 46556, USA.

出版信息

Arch Biochem Biophys. 1997 Mar 1;339(1):200-9. doi: 10.1006/abbi.1996.9839.

Abstract

Azide ion is a mechanism-based inactivator of horseradish peroxidase [Ortiz de Montellano et al. (1988) Biochemistry 27, 5470-5476] and the peroxidase from the coprophilic fungus Coprinus macrorhizus [DePillis and Ortiz de Montellano (1989) Biochemistry 28, 7947-7952]. These peroxidases mediate the one-electron oxidation of azide ion-forming azidyl radical. Inactivation of these enzymes is caused by covalent modification of the heme prosthetic groups by azidyl radical. Lignin peroxidases from the wood-rotting fungus Phanerochaete chrysosporium are also inactivated when they catalyze oxidation of azide ion [Tuisel et al. (1991) Arch. Biochem. Biophys. 288, 456-462; DePillis et al. (1990) Arch. Biochem. Biophys. 280, 217-223]. Following inactivation of horseradish peroxidase and the peroxidase from C. macrorhizus substantial amounts of azidyl-heme adducts have been found. Only trace amounts of such adducts have been found following azide-mediated inactivation of lignin peroxidase. Nevertheless, we have shown that during oxidation of azide by lignin peroxidase H8 destruction of heme occurred and a substantial fraction of the enzyme is irreversibly inactivated. However, the rest of the enzyme forms a relatively stable ferrous-nitric oxide (NO) complex. Although this complex appears to be an inactivated form of the enzyme, we have shown that, when present as the ferrous-NO complex, the enzyme is actually protected from inactivation. The lignin peroxidase ferrous-NO complex reverts slowly (t1/2 = 6.3 x 10(3) s) to the ferric form. Reversion is accelerated if the complex is chromatographed on a PD-10 (Sephadex G-25) column or if veratryl alcohol is added. If azide and hydrogen peroxide (a required cosubstrate) are present (or added), the enzyme undergoes another cycle of catalysis and further inactivation. A detailed reaction mechanism is proposed that is consistent with our experimental observations, the chemistry of azide, and our current understanding of peroxidases.

摘要

叠氮离子是辣根过氧化物酶[奥尔蒂斯·德·蒙特利亚诺等人(1988年)《生物化学》27卷,5470 - 5476页]以及嗜粪真菌大根鬼伞过氧化物酶[德皮利斯和奥尔蒂斯·德·蒙特利亚诺(1989年)《生物化学》28卷,7947 - 7952页]的基于机制的失活剂。这些过氧化物酶介导叠氮离子的单电子氧化形成叠氮基自由基。这些酶的失活是由叠氮基自由基对血红素辅基的共价修饰引起的。当木腐真菌黄孢原毛平革菌的木质素过氧化物酶催化叠氮离子氧化时也会失活[图塞尔等人(1991年)《生物化学与生物物理学报》288卷,456 - 462页;德皮利斯等人(1990年)《生物化学与生物物理学报》280卷,217 - 223页]。在辣根过氧化物酶和大根鬼伞过氧化物酶失活后,已发现大量的叠氮基 - 血红素加合物。在叠氮介导的木质素过氧化物酶失活后,仅发现痕量的此类加合物。然而,我们已表明,在木质素过氧化物酶H8催化叠氮氧化过程中,血红素发生了破坏,并且相当一部分酶被不可逆地失活。然而,其余的酶形成了一种相对稳定的亚铁 - 一氧化氮(NO)复合物。尽管这种复合物似乎是酶的一种失活形式,但我们已表明,当以亚铁 - NO复合物形式存在时,酶实际上受到保护而不会失活。木质素过氧化物酶亚铁 - NO复合物缓慢(半衰期 = 6.3×10³秒)地恢复为铁形式。如果将复合物在PD - 10(葡聚糖G - 25)柱上进行色谱分离或加入藜芦醇,恢复速度会加快。如果存在(或加入)叠氮化物和过氧化氢(一种必需的共底物),酶会经历另一个催化和进一步失活的循环。提出了一个详细的反应机制,该机制与我们的实验观察结果、叠氮化物的化学性质以及我们目前对过氧化物酶的理解一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验