Crooks M, Hood J, Harkness M
Department of Orthodontics, School of Dentistry, University of Otago, New Zealand.
Am J Orthod Dentofacial Orthop. 1997 Feb;111(2):163-72. doi: 10.1016/s0889-5406(97)70212-9.
Thermal debonding has been developed to overcome the problems of enamel damage and high forces when debonding ceramic orthodontic brackets. However, the temperature changes with thermal debonding have the potential to damage the tooth tissues. The principal aims of this study are, first, to investigate the effects of resin type, resin thickness, and debonding force on the temperature changes in human premolars during thermal debonding of ceramic brackets and, second, to record the sites of bond failure and damage to the tooth surface. Ceramic brackets were attached to each specimen by using one of four types of bonding resin in a controlled thick or thin resin layer. The ceramic debonding unit (Dentaurum, Pforzheim, Germany) was used to thermally debond the brackets with either a 40 or 80 Nmm torsional force. Higher temperature changes at the pulpal wall (> 10 degrees C in some 40 Nmm torsional force specimens) always occurred with Concise (3M Dental Products, St. Paul, Minn.) and Transbond (Unitek/3M Dental Products, Monrovia, Calif.) resins, and lower temperature changes (< 5 degrees C) with Quasar (Rocky Mountain Orthodontics, Denver, Colo.) and Ortho. B.S. (Dentaurum, Pforzheim, Germany) resins. In general, resin thickness was not significantly associated with buccal surface or pulpal wall temperature changes. However, temperature changes at the pulpal wall were significantly associated with the temperature changes at the buccal surface (r = 0.76), with the temperature of the thermal debonder blade for thin resin layer specimens (r = 0.50), and the time required to debond the bracket for both thick (r = 0.74) and thin (r = 0.63) resin layer specimens. In most specimens, the site of bond failure occurred at the bracket-resin interface. There was no evidence of enamel damage after bracket removal.
为克服陶瓷正畸托槽脱粘时牙釉质损伤和力量过大的问题,热脱粘技术应运而生。然而,热脱粘过程中的温度变化可能会损伤牙体组织。本研究的主要目的,一是研究在陶瓷托槽热脱粘过程中,树脂类型、树脂厚度和脱粘力对人类前磨牙温度变化的影响,二是记录粘结失败的部位以及牙面的损伤情况。使用四种类型的粘结树脂之一,以可控的厚或薄树脂层将陶瓷托槽附着于每个标本上。使用陶瓷脱粘装置(德国普福尔茨海姆的Dentaurum公司生产),以40或80 Nmm的扭转力对托槽进行热脱粘。使用Concise树脂(明尼苏达州圣保罗市3M牙科产品公司生产)和Transbond树脂(加利福尼亚州蒙罗维亚市Unitek/3M牙科产品公司生产)时,牙髓壁的温度变化总是更高(在一些40 Nmm扭转力的标本中>10℃),而使用Quasar树脂(科罗拉多州丹佛市落基山正畸公司生产)和Ortho. B.S.树脂(德国普福尔茨海姆的Dentaurum公司生产)时,温度变化更低(<5℃)。一般来说,树脂厚度与颊面或牙髓壁温度变化无显著相关性。然而,牙髓壁的温度变化与颊面温度变化显著相关(r = 0.76),与薄树脂层标本的热脱粘刀片温度显著相关(r = 0.50),与厚(r = 0.74)和薄(r = 0.63)树脂层标本脱粘托槽所需时间显著相关。在大多数标本中,粘结失败部位发生在托槽-树脂界面。托槽拆除后没有牙釉质损伤的迹象。