Suppr超能文献

Methyl arachidonyl fluorophosphonate: a potent irreversible inhibitor of anandamide amidase.

作者信息

Deutsch D G, Omeir R, Arreaza G, Salehani D, Prestwich G D, Huang Z, Howlett A

机构信息

Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, 11794, U.S.A.

出版信息

Biochem Pharmacol. 1997 Feb 7;53(3):255-60. doi: 10.1016/s0006-2952(96)00830-1.

Abstract

Anandamide amidase (EC 3.5.1.4) is responsible for the hydrolysis of arachidonoyl ethanolamide (anandamide). Relatively selective and potent enzyme reversible inhibitors effective in the low micromolar range, such as arachidonyl trifluoromethyl ketone (Arach-CF3), have been described (Koutek et al., J Biol Chem 269: 22937-22940, 1994). In the current study, methyl arachidonyl fluorophosphonate (MAFP), an arachidonyl binding site directed phosphonylation reagent, was tested as an inhibitor of anandamide amidase and as a ligand for the CB1 cannabinoid receptor. MAFP was 800 times more potent than Arach-CF3 and phenylmethylsulfonyl fluoride (PMSF) as an amidase inhibitor in rat brain homogenates. In intact neuroblastoma cells, MAFP was also approximately 1000-fold more potent than Arach-CF3. MAFP demonstrated selectivity towards anandamide amidase for which it was approximately 3000 and 30,000-fold more potent than it was towards chymotrypsin and trypsin, respectively. MAFP displaced [3H]CP-55940 binding to the CB1 cannabinoid receptor with an IC50 of 20 nM vs 40 nM for anandamide. It bound irreversibly and prevented subsequent binding of the cannabinoid radioligand [3H]CP-55940 at that locus. These studies suggest that MAFP is a potent and specific inhibitor of anandamide amidase and, in addition, can interact with the cannabinoid receptors at the cannabinoid binding site. This is the first report of a potent and relatively selective irreversible inhibitor of arachidonoyl ethanolamide amidase.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验