Suppr超能文献

野生型人鸟氨酸转氨甲酰酶及一种导致“迟发性”高氨血症的复发性突变体的表达、纯化及动力学特性研究

Expression, purification and kinetic characterization of wild-type human ornithine transcarbamylase and a recurrent mutant that produces 'late onset' hyperammonaemia.

作者信息

Morizono H, Tuchman M, Rajagopal B S, McCann M T, Listrom C D, Yuan X, Venugopal D, Barany G, Allewell N M

机构信息

Department of Biochemistry, College of Biological Sciences, University of Minnesota, St. Paul 55108, U.S.A.

出版信息

Biochem J. 1997 Mar 1;322 ( Pt 2)(Pt 2):625-31. doi: 10.1042/bj3220625.

Abstract

Ornithine Transcarbamylase Deficiency, an X-linked disorder, is the most common cause of inherited urea cycle disorders. Approx. 90 mutations that produce reduced levels of ornithine transcarbamylase (OTCase) activity have been identified in patients [Tuchman (1993) Hum. Mutat. 2, 174-178; Tuchman and Plante (1995) Hum. Mutat. 5, 293-295]. A model of the three-dimensional structure of OTCase, developed on the basis of its homology to the catalytic subunit of Escherichia coli aspartate transcarbamylase (ATCase) [Tuchman, Morizono, Reish, Yuan and Allewell (1995) J. Med. Genet. 32, 680-688], and in good agreement with the crystal structure of Pseudomonas aeruginosa OTCase [Villeret, Tricot, Stalon and Dideberg (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 10762-10766], indicates that many mutations that produce severe clinical symptoms are at the active site or buried in the interior of the protein. However, one of the few recurrent mutations, R277W, an alteration that produces a milder phenotype of ornithine transcarbamylase deficiency, is located in the model in a loop remote from the active site that is analogous to a similar loop (the 240's loop, a flexible loop of the catalytic chain of Escherichia coli aspartate transcarbamylase, comprised of residues 230-250) of ATCase. Human wild-type OTCase and the R277W mutant have been cloned and overexpressed in E. coli and a rapid and efficient purification method utilizing the bisubstrate analogue, Ndelta-(phosphonacetyl)-L-ornithine, has been developed and used to purify both proteins. Gel chromatography indicates both are trimeric. The pH dependence of the kinetic parameters of the wild-type enzyme is similar to that of E. coli OTCase [Kuo, Herzberg and Lipscomb (1985) Biochemistry 24, 4754-4761], suggesting that its catalytic mechanism is similar, although its maximal activity is approx. 10-fold less. Compared with the wild-type, the R277W mutant has nearly 70-fold lower affinity for L-ornithine, shows no substrate inhibition, and its thermal stability is reduced by 5 degrees C. Its reduced affinity for L-ornithine, which in turn results in lower activity at physiological concentrations of ornithine, as well as its reduced stability, may contribute to the clinical effects that it produces.

摘要

鸟氨酸转氨甲酰酶缺乏症是一种X连锁疾病,是遗传性尿素循环障碍最常见的病因。在患者中已鉴定出约90种导致鸟氨酸转氨甲酰酶(OTCase)活性水平降低的突变 [图克曼(1993年),《人类突变》,第2卷,第174 - 178页;图克曼和普兰特(1995年),《人类突变》,第5卷,第293 - 295页]。基于与大肠杆菌天冬氨酸转氨甲酰酶(ATCase)催化亚基的同源性构建的OTCase三维结构模型 [图克曼、森园、雷什、袁和阿莱韦尔(1995年),《医学遗传学杂志》,第32卷,第680 - 688页],与铜绿假单胞菌OTCase的晶体结构高度吻合 [维勒雷、特里科、斯塔隆和迪德伯格(1995年),《美国国家科学院院刊》,第92卷,第10762 - 10766页],表明许多产生严重临床症状的突变位于活性位点或深埋于蛋白质内部。然而,少数反复出现的突变之一,R277W,这种突变产生的鸟氨酸转氨甲酰酶缺乏症表型较轻,在模型中位于远离活性位点的一个环中,该环类似于ATCase的一个类似环(240's环,大肠杆菌天冬氨酸转氨甲酰酶催化链的一个柔性环,由230 - 250位残基组成)。人类野生型OTCase和R277W突变体已在大肠杆菌中克隆并过量表达,并且已开发出一种利用双底物类似物Nδ -(膦酰乙酰)-L - 鸟氨酸的快速高效纯化方法,用于纯化这两种蛋白质。凝胶色谱表明两者均为三聚体。野生型酶动力学参数的pH依赖性与大肠杆菌OTCase相似 [郭、赫茨伯格和利普斯科姆(1985年),《生物化学》,第24卷,第4754 - 4761页],这表明其催化机制相似,尽管其最大活性约低10倍。与野生型相比,R277W突变体对L - 鸟氨酸的亲和力降低了近70倍,无底物抑制作用,其热稳定性降低了5℃。其对L - 鸟氨酸亲和力的降低,进而导致在生理浓度的鸟氨酸下活性降低,以及稳定性降低,可能是其产生临床效应的原因。

相似文献

3
鸟氨酸转氨甲酰酶缺乏症的分子基础:人类酶的建模及突变的影响
J Med Genet. 1995 Sep;32(9):680-8. doi: 10.1136/jmg.32.9.680.
4
鸟氨酸转氨甲酰酶缺乏症的生化与分子谱
J Inherit Metab Dis. 1998;21 Suppl 1:40-58. doi: 10.1023/a:1005353407220.
5
底物诱导的三聚体鸟氨酸转氨甲酰酶构象变化。
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9550-5. doi: 10.1073/pnas.94.18.9550.
8
嗜冷菌的代谢酶:深海莫氏菌鸟氨酸氨甲酰基转移酶适应低温的挑战
J Bacteriol. 2003 Apr;185(7):2161-8. doi: 10.1128/JB.185.7.2161-2168.2003.
9
嗜热栖热菌HB8鸟氨酸转氨甲酰酶的晶体结构分析为活性位点的可塑性提供了见解。
Biochem Biophys Res Commun. 2015 Sep 18;465(2):174-9. doi: 10.1016/j.bbrc.2015.07.096. Epub 2015 Jul 23.

引用本文的文献

2
重新审视人类鸟氨酸转氨甲酰酶中催化残基的作用。
Biochemistry. 2024 Jul 16;63(14):1858-1875. doi: 10.1021/acs.biochem.4c00206. Epub 2024 Jun 28.
3
使用生成式神经网络进行治疗性酶工程。
Sci Rep. 2022 Jan 27;12(1):1536. doi: 10.1038/s41598-022-05195-x.
4
罕见病中的精准医学:N-氨甲酰-L-谷氨酸对突变型CPS1酶不同作用的机制
Mol Genet Metab. 2017 Mar;120(3):198-206. doi: 10.1016/j.ymgme.2016.12.002. Epub 2016 Dec 8.
5
一种双腺相关病毒(AAV)系统能够在新生小鼠中实现Cas9介导的代谢性肝病矫正。
Nat Biotechnol. 2016 Mar;34(3):334-8. doi: 10.1038/nbt.3469. Epub 2016 Feb 1.
7
鸟氨酸转氨甲酰酶缺乏症的基因型-表型相关性:突变更新
J Genet Genomics. 2015 May 20;42(5):181-94. doi: 10.1016/j.jgg.2015.04.003. Epub 2015 May 19.
9
粪肠球菌精脒乙酰基转移酶的晶体结构和生化性质:组装、活性位点和别构调节。
Proteins. 2012 May;80(5):1436-47. doi: 10.1002/prot.24042. Epub 2012 Feb 13.
10
使用优化的自互补 AAV2/8 载体持续纠正 spf(ash) 小鼠的 OTC 缺乏症。
Gene Ther. 2012 Apr;19(4):404-10. doi: 10.1038/gt.2011.111. Epub 2011 Aug 18.

本文引用的文献

4
鸟氨酸转氨甲酰酶缺乏症的分子基础:人类酶的建模及突变的影响
J Med Genet. 1995 Sep;32(9):680-8. doi: 10.1136/jmg.32.9.680.
5
人类鸟氨酸转氨甲酰酶基因中的突变和多态性。
Hum Mutat. 1993;2(3):174-8. doi: 10.1002/humu.1380020304.
6
鸟氨酸转氨甲酰酶中色氨酸残基的荧光寿命
Biochemistry. 1993 Dec 21;32(50):13925-32. doi: 10.1021/bi00213a023.
7
猪肝鸟氨酸转氨甲酰酶的纯化及性质
Arch Biochem Biophys. 1994 Mar;309(2):293-9. doi: 10.1006/abbi.1994.1116.
10
RASMOL:面向所有人的生物分子图形软件。
Trends Biochem Sci. 1995 Sep;20(9):374. doi: 10.1016/s0968-0004(00)89080-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验