McMullin S T, Reichley R M, Kahn M G, Dunagan W C, Bailey T C
Department of Pharmacy, Barnes-Jewish Hospital, St. Louis, MO 63110, USA.
Am J Health Syst Pharm. 1997 Mar 1;54(5):545-9. doi: 10.1093/ajhp/54.5.545.
A hospital's experience with an automated system for screening drug orders for potential dosage problems is described. DoseChecker was developed by the hospital pharmacy department in collaboration with a local university. Pharmacy, laboratory, and patient demographic data are transferred nightly from the hospital's mainframe system to a database server; DoseChecker uses these data and user-defined rules to (1) identify patients receiving any of 35 targeted medications, (2) evaluate the appropriateness of current dosages, and (3) generate alerts for patients potentially needing dosage adjustments. The alert reports are distributed to satellite pharmacists, who evaluate each patient's condition and make recommendations to physicians as needed. One of the system's primary purposes is to calculate creatinine clearance and verify that dosages are properly adjusted for renal function. Between May and October 1995, the system electronically screened 28,528 drug orders and detected potential dosage problems in 2859 (10%). The system recommended a lower daily dose in 1992 cases (70%) and a higher daily dose in 867 (30%). Pharmacists contacted physicians concerning 1163 (41%) of the 2859 alerts; in 868 cases (75%), the physicians agreed to adjust the dosage. The most common dosage problem identified was failure to adjust dosages on the basis of declining renal function. An automated system provided an efficient method of identifying inappropriate dosages at a large university hospital.
本文描述了一家医院使用自动化系统筛查药物医嘱潜在剂量问题的经验。DoseChecker是由医院药房与当地一所大学合作开发的。药房、实验室和患者人口统计学数据每晚从医院的主机系统传输到数据库服务器;DoseChecker使用这些数据和用户定义的规则来:(1)识别正在接受35种目标药物中任何一种治疗的患者;(2)评估当前剂量的合理性;(3)为可能需要调整剂量的患者生成警报。警报报告分发给卫星药剂师,他们评估每个患者的情况,并根据需要向医生提出建议。该系统的主要目的之一是计算肌酐清除率,并核实剂量是否根据肾功能进行了适当调整。在1995年5月至10月期间,该系统对28528份药物医嘱进行了电子筛查,发现2859份(10%)存在潜在剂量问题。该系统建议在1992例(70%)中降低每日剂量,在867例(30%)中提高每日剂量。药剂师就2859份警报中的1163份(41%)与医生进行了联系;在868例(75%)中,医生同意调整剂量。识别出的最常见剂量问题是未能根据肾功能下降调整剂量。一个自动化系统为一所大型大学医院识别不适当剂量提供了一种有效的方法。