Abramovitz D L, Pyle A M
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
J Mol Biol. 1997 Feb 28;266(3):493-506. doi: 10.1006/jmbi.1996.0810.
One of the most common RNA tertiary interactions involves the docking of GNRA hairpin loops into stem-loop structures on other regions of RNA. Domain 5 of the group II intron interacts with Domain 1 through such an interaction, which has been characterized thermodynamically and kinetically for the ai5g intron. Using this system, it was possible to test the morphological tolerances of the GNRA tetraloop involved in tertiary interactions. The data presented herein show that a GNRA tetraloop can still participate in tertiary interaction after being physically cut at any phosphodiester linkage within the loop. The "nicked tetraloop" can be expanded by many nucleotides in either direction and the covalently continuous loop can also be expanded without loss of interaction energy. In the context of the nicked tetraloop, the second nucleotide of the tetraloop sequence can be completely deleted without loss of function. By examining radical alterations in tetraloop structure, this study helps define the minimal sequence and structural requirements of a GNRA motif involved in long-range tertiary interaction. It shows that "tetraloop"-like structures capable of forming tertiary interactions can be imbedded in unexpected contexts, such as internal loops and apparently open structure within RNA. It demonstrates that pentaloops and hexaloops can form the same type of interaction, with almost equal affinity, as a tetraloop. Taken together, these data suggest a more generic term for the GNRA tetraloop-receptor interaction: It is proposed herein that the term "GNRA tetraloop" be replaced by "GNn/RA", where n represents a variable number of nucleotides and / indicates that the loop can be divided and interrupted by other sequences.
最常见的RNA三级相互作用之一是GNRA发夹环与RNA其他区域的茎环结构对接。II类内含子的结构域5通过这种相互作用与结构域1相互作用,这种相互作用已针对ai5g内含子进行了热力学和动力学表征。利用该系统,可以测试参与三级相互作用的GNRA四环的形态耐受性。本文给出的数据表明,GNRA四环在环内任何磷酸二酯键处被物理切割后仍可参与三级相互作用。“带切口的四环”可以在任一方向上扩展多个核苷酸,并且共价连续的环也可以扩展而不会损失相互作用能。在带切口的四环的情况下,四环序列的第二个核苷酸可以完全缺失而不丧失功能。通过研究四环结构的根本性改变,本研究有助于确定参与远程三级相互作用的GNRA基序的最小序列和结构要求。它表明能够形成三级相互作用的“四环”样结构可以嵌入意想不到的环境中,例如RNA内的内环和明显开放的结构。它证明了五环和六环可以形成与四环相同类型的相互作用,且亲和力几乎相等。综上所述,这些数据为GNRA四环-受体相互作用提出了一个更通用的术语:本文建议将“GNRA四环”一词替换为“GNn/RA”,其中n代表可变数量的核苷酸,/表示环可以被其他序列分割和中断。