Thomas G D, O'Rourke B, Sikkink R, Rusnak F, Marban E, Victor R G
The University of Texas Southwestern Medical Center, Molecular Cardiology Laboratories, Dallas 75235-8573, USA.
Brain Res. 1997 Feb 21;749(1):101-8. doi: 10.1016/s0006-8993(96)01305-4.
Reversible protein phosphorylation is thought to play an important regulatory role in synaptic neurotransmission. We recently have shown in cultured rat cortical neurons that inhibition of the Ca2+/calmodulin-dependent phosphatase calcineurin (phosphatase 2B) increases the frequency, but not the amplitude, of postsynaptic glutamatergic currents, implicating a presynaptic site of action for calcineurin. The specific presynaptic phosphoprotein substrates for calcineurin are unknown, however, calcineurin has been implicated in the control of the Ca2+-independent phosphatases, phosphatases 1 and 2A. To determine whether calcineurin's effects on synaptic transmission are direct or are mediated by changes in phosphatase 1 and/or 2A activities, we used whole-cell voltage clamp to record spontaneous and miniature excitatory postsynaptic currents in the presence of calyculin A (1 microM in bath solution), a membrane permeant inhibitor of phosphatases 1 and 2A which has no effect on calcineurin. Calyculin increased postsynaptic current amplitude without changing current frequency. In these same neurons, subsequent inhibition of calcineurin with cyclosporine A or FK506 had no further effect on current amplitude, but increased current frequency. The increased current amplitude seen with calyculin involved a postsynaptic mechanism, since the effect was reproduced by microcystin (10 microM in pipette solution), which is a membrane-impermeant inhibitor of phosphatases 1 and 2A. Thus, in rat cortical neurons, glutamatergic neurotransmission appears to be frequency-modulated through a presynaptic mechanism by calcineurin, and amplitude-modulated through a postsynaptic mechanism by phosphatases 1 and 2A.
可逆性蛋白质磷酸化被认为在突触神经传递中发挥重要的调节作用。我们最近在培养的大鼠皮层神经元中发现,抑制Ca2+/钙调蛋白依赖性磷酸酶钙调神经磷酸酶(磷酸酶2B)可增加突触后谷氨酸能电流的频率,但不改变其幅度,这表明钙调神经磷酸酶的作用位点在突触前。然而,钙调神经磷酸酶的具体突触前磷蛋白底物尚不清楚,不过,钙调神经磷酸酶与不依赖Ca2+的磷酸酶、磷酸酶1和2A的调控有关。为了确定钙调神经磷酸酶对突触传递的影响是直接的还是由磷酸酶1和/或2A活性的变化介导的,我们使用全细胞膜片钳技术,在存在抑制磷酸酶1和2A的膜通透抑制剂花萼海绵诱癌素A(浴槽溶液中为1μM)的情况下记录自发和微小兴奋性突触后电流,花萼海绵诱癌素A对钙调神经磷酸酶没有影响。花萼海绵诱癌素A增加了突触后电流幅度,而不改变电流频率。在这些相同的神经元中,随后用环孢菌素A或FK506抑制钙调神经磷酸酶对电流幅度没有进一步影响,但增加了电流频率。花萼海绵诱癌素A引起的电流幅度增加涉及突触后机制,因为该效应可被微囊藻毒素(电极内溶液中为10μM)重现,微囊藻毒素是磷酸酶1和2A的膜不透性抑制剂。因此,在大鼠皮层神经元中,谷氨酸能神经传递似乎通过钙调神经磷酸酶的突触前机制进行频率调节,并通过磷酸酶1和2A的突触后机制进行幅度调节。