Hubal E A, Schlosser P M, Conolly R B, Kimbell J S
Chemical Industry Institute of Toxicology, Research Triangle Park, North Carolina 27709, USA.
Toxicol Appl Pharmacol. 1997 Mar;143(1):47-55. doi: 10.1006/taap.1996.8076.
Kimbell and coworkers (Toxicol, Appl. Pharmacol, 121, 253-263, 1993) developed a computational fluid dynamics (CFD) model of a F344 rat nasal passage to quantify local wall mass flux (uptake rate) of inhaled chemical. To simulate formaldehyde uptake, Kimbell et al. assumed that mass transfer of formaldehyde from the air into the nasal lining was fast and complete. This was approximated in the CFD model by setting the formaldehyde concentration at the airway walls to zero. Experimental confirmation of formaldehyde mass-flux predictions is desirable if the CFD model is to be used for predicting formaldehyde dosimetry. The purpose of this study was to see if the CFD model predictions of formaldehyde mass flux are consistent with laboratory data on formaldehyde dosimetry. In this study, a mathematical model of the nasal lining was modified to link CFD dosimetry predictions for inhaled formaldehyde with measured tissue disposition of inhaled gas. This model treats the nasal lining as a single, well-stirred compartment, accounts for formaldehyde reaction via saturable and first-order pathways, and allows comparison of model-predicted DNA-protein cross-links (DPX) with regional DPX measured in formaldehyde-exposed rats. Effective Michaelis-Menten kinetic parameters (Vmax = 3040 microM/min and Km = 59 microM) and a pseudo-first-order rate constant for elimination of formaldehyde by nonsaturable pathways (kf = 6 min-1) were estimated (fit) using an average mass flux derived from experimentally measured uptake of formaldehyde. DPX predictions obtained using the estimated kinetic parameters and linking the CFD model to the nasal-lining model compared well with experimentally measured DPX. The close correlation between predicted and measured DPX in the rat nasal passage supports the CFD model predictions of formaldehyde mass flux at the level of resolution provided by the experimental data.
金贝尔及其同事(《毒理学与应用药理学》,第121卷,第253 - 263页,1993年)建立了一个F344大鼠鼻腔通道的计算流体动力学(CFD)模型,以量化吸入化学物质的局部壁面质量通量(摄取率)。为了模拟甲醛摄取,金贝尔等人假设甲醛从空气向鼻黏膜的传质快速且完全。这在CFD模型中通过将气道壁处的甲醛浓度设为零来近似。如果要将CFD模型用于预测甲醛剂量测定,甲醛质量通量预测的实验验证是很有必要的。本研究的目的是查看CFD模型对甲醛质量通量的预测是否与甲醛剂量测定的实验室数据一致。在本研究中,对鼻黏膜的数学模型进行了修改,以将吸入甲醛的CFD剂量测定预测与吸入气体的测量组织分布联系起来。该模型将鼻黏膜视为一个单一的充分搅拌隔室,考虑了通过饱和及一级途径的甲醛反应,并允许将模型预测的DNA - 蛋白质交联(DPX)与在甲醛暴露大鼠中测量的区域DPX进行比较。使用从实验测量的甲醛摄取得出的平均质量通量,估算(拟合)了有效的米氏动力学参数(Vmax = 3040微摩尔/分钟,Km = 59微摩尔)以及通过非饱和途径消除甲醛的伪一级速率常数(kf = 6分钟-1)。使用估算的动力学参数并将CFD模型与鼻黏膜模型相联系所获得的DPX预测与实验测量的DPX吻合良好。大鼠鼻腔通道中预测的和测量的DPX之间的紧密相关性支持了在实验数据提供的分辨率水平下CFD模型对甲醛质量通量的预测。