Suppr超能文献

Bepridil exacerbates glutamate-induced deterioration of calcium homeostasis and cultured nerve cell injury.

作者信息

Storozhevykh T P, Sorokina E G, Vinskaya N P, Pinelis V G, Vergun O V, Fayuk D A, Sobolevskiy A I, Khodorov B I

机构信息

Institute of Pediatrics, Russian Academy of Medical Sciences, Moscow, Russia.

出版信息

Int J Neurosci. 1996 Dec;88(3-4):199-214. doi: 10.3109/00207459609000615.

Abstract

Application of 50 microM bepridil (BPD) to cultured nerve cells did not greatly affect the resting cytoplasmic Ca2+ concentration ([Ca2+]i) but caused its pronounced increase both during prolonged glutamate (GLU, 100 microM) treatment and, especially, in the postglutamate period in case of partial [Ca2+]i recovery. In contrast, in cells exhibiting a high [Ca2+]i plateau in the postglutamate period, BPD application either did not cause any additional elevation of [Ca2+]i or caused a very small increase. Under identical conditions replacement of external Na+ by Li+ or N-methyl-D-glucamine (NMDG) either did not change [Ca2+]i or produced a very small increase, strongly indicating that the BPD-evoked Ca2+ responses could not be explained solely by Na+/Ca2+ exchange inhibition but resulted from some other BPD effects. Indeed, in experiments with Rhodamine 123-loaded neurons it has been shown that 50 microM BPD induced prominent mitochondrial depolarization which is known to abolish the mitochondrial Ca2+ uptake. Finally it was revealed that BPD application to the cell culture either in the period of a prolonged (15 min) GLU action or, especially, in the postglutamate period greatly exacerbated delayed neuronal death, apparently due to a complex inhibitory action of the drug on both Ca2+ buffering and Ca2+ extrusion systems.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验