Suppr超能文献

Modulation of [3H]dopamine release by neuropeptide Y in rat striatal slices.

作者信息

Tsuda K, Tsuda S, Nishio I, Goldstein M, Masuyama Y

机构信息

Department of Medicine, Wakayama Medical College, Japan.

出版信息

Eur J Pharmacol. 1997 Feb 19;321(1):5-11. doi: 10.1016/s0014-2999(96)00921-1.

Abstract

Neuropeptide Y, a 36-amino-acid peptide, has a wide and specific distribution in the central nervous system. In this study we examined the regulatory mechanisms of neuropeptide Y on dopamine release in the rat central nervous system. The effects of neuropeptide Y on the electrically stimulated [3H]dopamine release were investigated in superfused striatal slices of Sprague-Dawley rats, spontaneously hypertensive rats and Wistar-Kyoto rats. Neuropeptide Y (1 x 10(-8) - 1 x 10(-7) mol/1) reduced the stimulation (1 Hz)-induced [3H]dopamine release by a comparable amount in Sprague-Dawley rats. The blockade of dopamine D2 receptors by the dopamine D2 receptor antagonist, sulpiride, diminished the inhibitory effects of neuropeptide Y on the stimulation-evoked [3H]dopamine release. Pretreatment of slices with pertussis toxin (a potent inhibitor of G1-proteins) attenuated the suppression of the stimulation-evoked [3H]dopamine release by neuropeptide Y. Unlabelled dopamine itself reduced the stimulation-evoked [3H]dopamine release, and the inhibitory effect was also attenuated in the pertussis toxin-pretreated slices. In spontaneously hypertensive rats, the inhibitory effect of neuropeptide Y on the stimulation-evoked [3H]dopamine release was more pronounced than that in Wistar-Kyoto rats. The results of the present study showed that neuropeptide Y inhibited the stimulation-evoked dopamine release partially mediated by dopamine D2 receptors and the pertussis toxin-sensitive G1-proteins in rat striatum. Furthermore, the greater effect of neuropeptide Y on dopamine release in spontaneously hypertensive rats suggests a possible involvement of the peptide in regulating the central dopaminergic nerve activity in hypertension.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验