Miller G S, Fuchs R
Glaxo Wellcome Inc. Bioinformatics Group, Research Triangle Park, NC 27709, USA.
Comput Appl Biosci. 1997 Feb;13(1):81-7. doi: 10.1093/bioinformatics/13.1.81.
When evaluating the results of a sequence similarity search, there are many situations where it can be useful to determine whether sequences appearing in the results share some distinguishing characteristic. Such dependencies between database entries are often not readily identifiable, but can yield important new insights into the biological function of a gene or protein.
We have developed a program called CBLAST that sorts the results of a BLAST sequence similarity search according to sequence membership in user-defined 'clusters' of sequences. To demonstrate the utility of this application, we have constructed two cluster databases. The first describes clusters of nucleotide sequences representing the same gene, as documented in the UNIGENE database, and the second describes clusters of protein sequences which are members of the protein families documented in the PROSITE database. Cluster databases and the CBLAST post-processor provide an efficient mechanism for identifying and exploring relationships and dependencies between new sequences and database entries.
在评估序列相似性搜索结果时,很多情况下确定结果中出现的序列是否具有某些显著特征是很有用的。数据库条目中的这种相关性通常不容易识别,但可以为基因或蛋白质的生物学功能带来重要的新见解。
我们开发了一个名为CBLAST的程序,它根据用户定义的序列“簇”中的序列成员关系对BLAST序列相似性搜索结果进行排序。为了证明该应用程序的实用性,我们构建了两个簇数据库。第一个描述了代表同一基因的核苷酸序列簇,如在UNIGENE数据库中记录的那样,第二个描述了蛋白质序列簇,这些序列是PROSITE数据库中记录的蛋白质家族的成员。簇数据库和CBLAST后处理器提供了一种有效的机制,用于识别和探索新序列与数据库条目之间的关系和依赖性。