Suppr超能文献

口疮病毒内部核糖体进入位点结构域3远端环中保守的结构基序是翻译内部起始所必需的。

Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation.

作者信息

López de Quinto S, Martínez-Salas E

机构信息

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autonóma de Madrid, Cantoblanco, Spain.

出版信息

J Virol. 1997 May;71(5):4171-5. doi: 10.1128/JVI.71.5.4171-4175.1997.

Abstract

A comparison of picornavirus internal ribosome entry site (IRES) secondary structures revealed the existence of conserved motifs located on loops. We have carried out a mutational analysis to test their requirement for IRES-driven translation. The GUAA sequence, located in the aphthovirus 3A loop, did not tolerate substitutions that disrupt the GNRA motif. Interestingly, this motif was found at similar positions in all picornavirus IRESs, suggesting that it may form part of a tertiary-structure element. The RAAA tetranucleotide located in the 3B loop was conserved only in cardiovirus and aphthovirus. A mutational analysis of the RAAA motif revealed that activities of 3B loop mutants correlated with both the presence of a sequence close to CAAA at the new 3B loop and the absence of reorganization of the 3B and 3C stem-loops. In support of this conclusion, insertion of a large number of nucleotides close to the 3B loop, which was predicted to reorganize the 3B-3C stem-loop structure, led to defective IRES elements. We conclude that the aphthovirus IRES loops located at the most distal part of domain 3, which carries GNRA and RAAA motifs, are essential for IRES function.

摘要

小RNA病毒内部核糖体进入位点(IRES)二级结构的比较揭示了位于环上的保守基序的存在。我们进行了突变分析以测试它们对IRES驱动翻译的必要性。位于口蹄疫病毒3A环中的GUAA序列不能耐受破坏GNRA基序的替换。有趣的是,在所有小RNA病毒IRES的相似位置都发现了这个基序,这表明它可能是三级结构元件的一部分。位于3B环中的RAAA四核苷酸仅在心病毒和口蹄疫病毒中保守。对RAAA基序的突变分析表明,3B环突变体的活性与新3B环处靠近CAAA的序列的存在以及3B和3C茎环的未重组相关。为支持这一结论,在靠近3B环处插入大量核苷酸(预计会重组3B - 3C茎环结构)导致IRES元件有缺陷。我们得出结论,位于结构域3最远端、带有GNRA和RAAA基序的口蹄疫病毒IRES环对于IRES功能至关重要。

相似文献

引用本文的文献

2
Structure and function of type IV IRES in picornaviruses: a systematic review.
Front Microbiol. 2024 May 24;15:1415698. doi: 10.3389/fmicb.2024.1415698. eCollection 2024.
3
Insights into Polyprotein Processing and RNA-Protein Interactions in Foot-and-Mouth Disease Virus Genome Replication.
J Virol. 2023 May 31;97(5):e0017123. doi: 10.1128/jvi.00171-23. Epub 2023 May 8.
6
Revisiting the pathogenic mechanism of the GJB1 5' UTR c.-103C > T mutation causing CMTX1.
Neurogenetics. 2021 Jul;22(3):149-160. doi: 10.1007/s10048-021-00650-9. Epub 2021 Jun 5.
8
Insights into Structural and Mechanistic Features of Viral IRES Elements.
Front Microbiol. 2018 Jan 4;8:2629. doi: 10.3389/fmicb.2017.02629. eCollection 2017.
9
Genetic economy in picornaviruses: Foot-and-mouth disease virus replication exploits alternative precursor cleavage pathways.
PLoS Pathog. 2017 Oct 2;13(10):e1006666. doi: 10.1371/journal.ppat.1006666. eCollection 2017 Oct.
10
A researcher's guide to the galaxy of IRESs.
Cell Mol Life Sci. 2017 Apr;74(8):1431-1455. doi: 10.1007/s00018-016-2409-5. Epub 2016 Nov 16.

本文引用的文献

1
Unique features of internal initiation of hepatitis C virus RNA translation.
EMBO J. 1995 Dec 1;14(23):6010-20. doi: 10.1002/j.1460-2075.1995.tb00289.x.
2
RNA-protein interactions in regulation of picornavirus RNA translation.
Microbiol Rev. 1996 Sep;60(3):499-511. doi: 10.1128/mr.60.3.499-511.1996.
3
RNA tertiary structure mediation by adenosine platforms.
Science. 1996 Sep 20;273(5282):1696-9. doi: 10.1126/science.273.5282.1696.
5
Strategies for RNA folding.
Trends Biochem Sci. 1996 Apr;21(4):145-9.
7
Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site.
Virology. 1995 Dec 20;214(2):660-3. doi: 10.1006/viro.1995.0081.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验