Suppr超能文献

一种用于估计单室模型中零级吸收速率常数的修正残差法。

A modified residual method to estimate the zero-order absorption rate constant in a one-compartment model.

作者信息

Liu X, Brouwer K L, Pollack G M

机构信息

Division of Pharmaceutics, School of Pharmacy, University of North Carolina at Chapel Hill 27599-7360, USA.

出版信息

Biopharm Drug Dispos. 1997 Mar;18(2):93-101. doi: 10.1002/(sici)1099-081x(199703)18:2<93::aid-bdd2>3.0.co;2-1.

Abstract

The objective of this work was to develop a simple residual method to estimate the rate constant for actual or apparent zero-order absorption into a one-compartment model. The method is based on the fact that, in theory, a plot of residuals versus e-Kt is linear for a zero-order absorption process, where K represents the elimination rate constant governing the terminal phase of the concentration-time profile. The apparent absorption rate constant (K0) can be calculated from the slope and intercept of the residual plot. Simulated concentration-time data with superimposed random error (CV = 5, 10, 15%, n = 8), as well as data sets from the literature for hydroflumethiazide and theophylline were analyzed with the proposed method of residuals. Parameters derived with the new technique were compared to both the nonlinear least-squares regression and the Wagner-Nelson method, all of which yield comparable K0 estimates. These results indicate that the proposed method of residuals represents a simple approach for estimating the apparent zero-order absorption rate constant analogous to classic residual analysis for first-order absorption.

摘要

本研究的目的是开发一种简单的残差法,用于估计单室模型中实际或表观零级吸收的速率常数。该方法基于这样一个事实,即在理论上,对于零级吸收过程,残差与e-Kt的关系图呈线性,其中K代表控制浓度-时间曲线终末相的消除速率常数。表观吸收速率常数(K0)可根据残差图的斜率和截距计算得出。使用所提出的残差法分析了叠加随机误差(变异系数=5%、10%、15%,n=8)的模拟浓度-时间数据,以及来自氢氟噻嗪和茶碱文献的数据集。将新技术得出的参数与非线性最小二乘回归法和Wagner-Nelson法进行了比较,所有这些方法得出的K0估计值具有可比性。这些结果表明,所提出的残差法是一种估计表观零级吸收速率常数的简单方法,类似于一级吸收的经典残差分析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验