Boelens R, Vis H, Vorgias C E, Wilson K S, Kaptein R
Bijvoet Center for Biomolecular Research, Utrecht University, The Netherlands.
Biopolymers. 1996;40(5):553-9. doi: 10.1002/(sici)1097-0282(1996)40:5<553::aid-bip13>3.0.co;2-i.
The DNA-binding protein HU from Bacillus stearothermophilus (HUBst) is a dimer with a molecular weight of 195 kDa that is capable of bending DNA. An x-ray structure has been determined previously [Tanaka et al. 1984) Nature, vol. 310, pp. 376-381], but no structure could be established for a large part of the supposed DNA-binding beta-arms. Distance geometry and restrained molecular dynamics using nmr restraints were used to generate a set of 25 structures. These structures display a backbone rms deviation (RMSD) of 0.36 A for the well-defined region (residues 2-54 and 75-90). The structure of the core is very similar to that observed in the x-ray structure, with a pairwise RMSD of 1.06 A. The structure of the beta-hairpin arm contains a double flip-over at the prolines in the two strands of the beta-arm. Heteronuclear 15N relaxation measurements indicate that the beta-arm and the tip of the beta-arm is flexible. This explains the disorder observed in the solution and x-ray structures of the beta-arm with respect to the core of the protein. Overlayed onto itself the beta-arm is better defined, with a backbone RMSD of 1.0 A calculated for residues 54-59 and 69-74. The tip of the arm adopts a well-defined 4 : 6 beta-hairpin conformation. Changes in amide 15N and 1H chemical shifts upon titrating DNA are most pronounced for the residues in the beta-hairpin arm and for the residues in the second half of the third alpha-helix. Heteronuclear 15N relaxation data for free and complexed HUBst show that that the arms become structured upon DNA binding. Together with chemically induced nuclear polarization measurements on a mutant HUBst (M69Y; V76Y) this shows that the beta-hairpin arm is involved in direct DNA interaction.
嗜热脂肪芽孢杆菌的DNA结合蛋白HU(HUBst)是一种分子量为195 kDa的二聚体,能够使DNA弯曲。先前已确定其X射线结构[田中等人,1984年,《自然》,第310卷,第376 - 381页],但对于假定的DNA结合β - 臂的大部分区域,无法确定其结构。利用核磁共振约束的距离几何和受限分子动力学方法生成了一组25种结构。对于定义明确的区域(残基2 - 54和75 - 90),这些结构的主链均方根偏差(RMSD)为0.36 Å。核心结构与X射线结构中观察到的非常相似,成对RMSD为1.06 Å。β - 发夹臂的结构在β - 臂的两条链中的脯氨酸处包含一个双翻转。异核15N弛豫测量表明β - 臂及其末端是灵活的。这解释了在β - 臂相对于蛋白质核心的溶液和X射线结构中观察到的无序现象。β - 臂自身叠加时定义更明确,对于残基54 - 59和69 - 74计算得到的主链RMSD为1.0 Å。臂的末端采用定义明确的4 : 6 β - 发夹构象。滴定DNA时酰胺15N和1H化学位移的变化对于β - 发夹臂中的残基以及第三个α - 螺旋后半部分的残基最为明显。游离和复合的HUBst的异核15N弛豫数据表明,臂在结合DNA时会形成结构。与对突变体HUBst(M69Y;V76Y)的化学诱导核极化测量一起,这表明β - 发夹臂参与直接的DNA相互作用。