Sipe H J, Corbett J T, Mason R P
Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
Drug Metab Dispos. 1997 Apr;25(4):468-80.
Phenolphthalein, a widely used laxative, is the active ingredient in more than a dozen commercial nonprescription formulations. Fast-flow EPR studies of the reaction of phenolphthalein with horseradish peroxidase (HRP) and hydrogen peroxide permit the direct detection of two free radicals. One has EPR parameters characteristic of phenoxyl radicals. The other has a broad unresolved spectrum, possibly arising from free radical polymeric products of the initial phenoxyl radical. EPR spin-trapping studies of incubations of phenolphthalein with lactoperoxidase, reduced glutathione (GSH), and hydrogen peroxide with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrate stimulated production of DMPO/.SG compared with an identical incubation lacking phenolphthalein. In the absence of DMPO, measurements with a Clark-type oxygen electrode show that molecular oxygen is consumed by a sequence of reactions initiated by the glutathione thiyl radical. Enhanced production of DMPO superoxide radical adduct is also found in a system of phenolphthalein, NADH, and lactoperoxidase. In this system the phenolphthalein phenoxyl radical abstracts hydrogen from NADH to generate NAD., which is not spin trapped by DMPO, but reacts with molecular oxygen to produce the superoxide radical detected by EPR. In the absence of DMPO, the oxygen consumption is measured using the Clark-type electrode. Production of ascorbate radical anion is also enhanced in a system of phenolphthalein, ascorbic acid, hydrogen peroxide, and lactoperoxidase. Ascorbate inhibits oxygen consumption when phenolphthalein is metabolized in the presence of either glutathione or NADH by reducing radical intermediates to their parent molecules and forming the relatively stable ascorbate anion radical. The detection of enhanced free radical production in these three systems, a consequence of futile metabolism (or redox cycling), suggests that phenolphthalein may be a significant source of oxidative stress in physiological systems. Parallel EPR and oxygen consumption studies with phenolphthalein glucuronide give analogous results, but with lesser enhancement of free radical production.
酚酞是一种广泛使用的泻药,是十几种商业非处方制剂中的活性成分。对酚酞与辣根过氧化物酶(HRP)和过氧化氢反应的快速流动电子顺磁共振(EPR)研究允许直接检测到两种自由基。一种具有苯氧自由基的EPR参数特征。另一种具有宽的未解析谱,可能源于初始苯氧自由基的自由基聚合产物。用5,5-二甲基-1-吡咯啉N-氧化物(DMPO)对酚酞与乳过氧化物酶、还原型谷胱甘肽(GSH)和过氧化氢的孵育进行EPR自旋捕集研究表明,与缺乏酚酞的相同孵育相比,DMPO/.SG的产生受到刺激。在没有DMPO的情况下,用克拉克型氧电极进行测量表明,分子氧被谷胱甘肽硫自由基引发的一系列反应消耗。在酚酞、NADH和乳过氧化物酶的体系中也发现DMPO超氧自由基加合物的产生增强。在该体系中,酚酞苯氧自由基从NADH中夺取氢以生成NAD.,其不会被DMPO自旋捕集,但与分子氧反应生成通过EPR检测到的超氧自由基。在没有DMPO的情况下,使用克拉克型电极测量耗氧量。在酚酞、抗坏血酸、过氧化氢和乳过氧化物酶的体系中,抗坏血酸自由基阴离子的产生也增强。当酚酞在谷胱甘肽或NADH存在下代谢时,抗坏血酸通过将自由基中间体还原为其母体分子并形成相对稳定的抗坏血酸阴离子自由基来抑制耗氧量。在这三个体系中检测到自由基产生增强,这是无效代谢(或氧化还原循环)的结果,表明酚酞可能是生理系统中氧化应激的重要来源。对酚酞葡糖苷酸进行的平行EPR和耗氧量研究给出了类似的结果,但自由基产生的增强程度较小。