Suppr超能文献

Role of ribonucleotide reductase and deoxynucleotide pools in the oxygen-dependent control of DNA replication in Ehrlich ascites cells.

作者信息

Brischwein K, Engelcke M, Riedinger H J, Probst H

机构信息

Physiologisch-chemisches Institut der Universität Tübingen, Germany.

出版信息

Eur J Biochem. 1997 Mar 1;244(2):286-93. doi: 10.1111/j.1432-1033.1997.00286.x.

Abstract

Cultured Ehrlich ascites cells were exposed to different oxygen tensions (ranging from nearly complete anoxia to 95% O2 at 10(5) Pa) and to transient (5-10 h) hypoxia (0.02% O2 at 10(5) Pa). Treated cells were examined with respect to the intracellular concentration of the M2-specific tyrosyl free radical of ribonucleotide reductase by EPR spectroscopy, and with respect to the pool sizes of all four deoxynucleoside triphosphates by an enzymatic assay employing DNA polymerase I of Escherichia coli. From 2% to 0.02% O2, the free radical level decreased continually from a normal value to just above detectability by the EPR measurement employed, and quickly recovered when hypoxic cells were resupplied with atmospheric O2. Concurrently, analogous changes of the size of the dCTP pool occurred, whereas the pool sizes dATP and dGTP underwent no changes, and the size of the dTTP pool only moderate changes. The changes of the free radical concentration and of the dCTP pool correlated well with the suppression or reactivation of DNA replication under the respective O2 conditions. The results consistently support the hypothesis of a fast-acting regulatory pathway that controls the rate of DNA replication in proliferating cells according to sufficient availability of O2. Therefore, ribonucleotide reductase may serve, in addition to providing DNA building blocks, as a pO2 sensor, which transmits the signal in the form of an altered intracellular dCTP concentration, directly or indirectly, to the nuclear-replication machinery.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验