Suppr超能文献

Effects of caffeine on the influx of extracellular calcium in GH4C1 pituitary cells.

作者信息

Karhapää L, Törnquist K

机构信息

Department of Biosciences, University of Helsinki, Finland.

出版信息

J Cell Physiol. 1997 Apr;171(1):52-60. doi: 10.1002/(SICI)1097-4652(199704)171:1<52::AID-JCP7>3.0.CO;2-G.

Abstract

Caffeine increases intracellular Ca2+ concentrations ([Ca2+]i) in a variety of cell types by triggering the mobilization of Ca2+ from intracellular Ca2+ stores. Caffeine also can change [Ca2+]i by affecting Ca2+ influx through voltage-operated Ca2+ channels (VOCCs). In the present study, we investigated the effects of caffeine on Ca2+ entry in GH4C1 pituitary cells. Pretreatment of the cells with caffeine attenuated the high K+-evoked influx of 45Ca2+ in a dose-dependent manner. This inhibition was not secondary to the caffeine-evoked elevation of [Ca2+]i because caffeine was able to inhibit VOCCs also in the presence of the intracellular Ca2+ chelator BAPTA. However, the inhibitory effect of caffeine on 45Ca2+ entry appeared to be dependent on the degree of depolarization of the plasma membrane. Only in cells depolarized with relatively high concentrations of K+ (20, 35, and 50 mM) was the caffeine-induced inhibition observed. A similar inhibitory effect of caffeine on the high K+-evoked calcium and barium entry was observed in experiments using Fura 2. Neither IBMX, forskolin nor dibutyryl cAMP reduced the enhanced [Ca2+]i induced by 50 mM K+, suggesting that the effect of caffeine was not due to increased intracellular cAMP. Furthermore, high doses of caffeine inhibited the plateau level of the TRH-induced increase in [Ca2+]i, which is caused partly by influx of Ca2+ through VOCCs. The inhibitory effect of caffeine was, in part, due to an hyperpolarization of the plasma membrane observed at high doses of caffeine. On the other hand, low doses of caffeine enhanced depolarization-evoked Ba2+ entry as well as the TRH-evoked plateau level of [Ca2+]i. We conclude that caffeine has a dual effect on Ca2+ entry through activated VOCCs in GH4C1 cells: at low concentrations caffeine enhances Ca2+ entry, whereas high concentrations of caffeine block Ca2+ entry.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验