Suppr超能文献

用于超声图像分割的最小交叉熵阈值法的二维扩展

A two-dimensional extension of minimum cross entropy thresholding for the segmentation of ultrasound images.

作者信息

Zimmer Y, Tepper R, Akselrod S

机构信息

Medical Physics Department, Tel Aviv University, Israel.

出版信息

Ultrasound Med Biol. 1996;22(9):1183-90. doi: 10.1016/s0301-5629(96)00167-6.

Abstract

Segmentation is often an important step in medical image analysis. The local entropy is a possible variable for segmenting ultrasound images containing fluid surrounded by a soft tissue. A commonly used tool for image segmentation is thresholding. Recently, a new thresholding technique, known as "minimum cross entropy thresholding" (MCE), has been proposed. We present a multivariate extension of MCE in which the segmented variable (gray level) is replaced by a weighted combination of several image parameters. We propose to use a bivariate extension of MCE, which uses a linear combination of the gray level and the local entropy. The results obtained are demonstrated for ultrasound images of ovarian cysts.

摘要

分割通常是医学图像分析中的一个重要步骤。局部熵是用于分割包含被软组织包围的液体的超声图像的一个可能变量。图像分割的一种常用工具是阈值处理。最近,一种新的阈值处理技术,即“最小交叉熵阈值处理”(MCE)被提出。我们提出了MCE的多变量扩展,其中分割变量(灰度级)被几个图像参数的加权组合所取代。我们建议使用MCE的双变量扩展,它使用灰度级和局部熵的线性组合。所获得的结果在卵巢囊肿的超声图像上得到了验证。

相似文献

5
The distribution of the local entropy in ultrasound images.超声图像中局部熵的分布
Ultrasound Med Biol. 1996;22(4):431-9. doi: 10.1016/0301-5629(95)02064-0.
8
Computerized quantification of structures within ovarian cysts using ultrasound images.
Ultrasound Med Biol. 1999 Feb;25(2):189-200. doi: 10.1016/s0301-5629(98)00150-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验