Suppr超能文献

苹果酸脱氢酶酶促反应机制的模拟。

Simulation of the enzyme reaction mechanism of malate dehydrogenase.

作者信息

Cunningham M A, Ho L L, Nguyen D T, Gillilan R E, Bash P A

机构信息

Center for Mechanistic Biology and Biotechnology, Argonne National Laboratory, Illinois 60439, USA.

出版信息

Biochemistry. 1997 Apr 22;36(16):4800-16. doi: 10.1021/bi962734n.

Abstract

A hybrid numerical method, which employs molecular mechanics to describe the bulk of the solvent-protein matrix and a semiempirical quantum-mechanical treatment for atoms near the reactive site, was utilized to simulate the minimum energy surface and reaction pathway for the interconversion of malate and oxaloacetate catalyzed by the enzyme malate dehydrogenase (MDH). A reaction mechanism for proton and hydride transfers associated with MDH and cofactor nicotinamide adenine dinucleotide (NAD) is deduced from the topology of the calculated energy surface. The proposed mechanism consists of (1) a sequential reaction with proton transfer preceding hydride transfer (malate to oxaloacetate direction), (2) the existence of two transition states with energy barriers of approximately 7 and 15 kcal/mol for the proton and hydride transfers, respectively, and (3) reactant (malate) and product (oxaloacetate) states that are nearly isoenergetic. Simulation analysis of the calculated energy profile shows that solvent effects due to the protein matrix dramatically alter the intrinsic reactivity of the functional groups involved in the MDH reaction, resulting in energetics similar to that found in aqueous solution. An energy decomposition analysis indicates that specific MDH residues (Arg-81, Arg-87, Asn-119, Asp-150, and Arg-153) in the vicinity of the substrate make significant energetic contributions to the stabilization of proton transfer and destabilization of hydride transfer. This suggests that these amino acids play an important role in the catalytic properties of MDH.

摘要

一种混合数值方法被用于模拟苹果酸脱氢酶(MDH)催化苹果酸和草酰乙酸相互转化的最低能量表面和反应路径。该方法采用分子力学描述溶剂 - 蛋白质基质的主体部分,并对反应位点附近的原子进行半经验量子力学处理。从计算出的能量表面拓扑结构推导出与MDH和辅因子烟酰胺腺嘌呤二核苷酸(NAD)相关的质子和氢化物转移的反应机制。所提出的机制包括:(1)在氢化物转移之前进行质子转移的顺序反应(苹果酸到草酰乙酸方向);(2)分别存在两个过渡态,质子和氢化物转移的能量障碍约为7千卡/摩尔和15千卡/摩尔;(3)反应物(苹果酸)和产物(草酰乙酸)状态几乎等能。对计算出的能量分布进行模拟分析表明,蛋白质基质引起的溶剂效应极大地改变了MDH反应中涉及的官能团的固有反应性,导致其能量学与在水溶液中发现的相似。能量分解分析表明,底物附近的特定MDH残基(Arg - 81、Arg - 87、Asn - 119、Asp - 150和Arg - 153)对质子转移的稳定和氢化物转移的不稳定有显著的能量贡献。这表明这些氨基酸在MDH的催化特性中起重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验