Fujii G, Chang J E, Coley T, Steere B
Molecular Express, Inc., Los Angeles, California 90061, USA.
Biochemistry. 1997 Apr 22;36(16):4959-68. doi: 10.1021/bi962894z.
The ability of amphotericin B (AmB) to form ion-permeable channels in cholesterol containing lipid bilayers was studied by UV/visible absorbance, circular dichroism, and fluorescence spectroscopy. Stable liposomes composed of distearoylphosphatidylcholine, cholesterol, distearoylphosphatidylglycerol, and AmB were prepared so that a wide range of AmB concentrations in the bilayer could be studied. Singular value decomposition analysis (Henry & Hofrichter, 1992) of the circular dichroism spectra of AmB at different AmB/lipid ratios suggests that AmB exists primarily in only two states in the bilayer, a "monomeric" state and an "aggregated" state. The transition from the "monomeric" to the "aggregated" state begins to occur at a critical concentration of 1 AmB per 1000 lipids in the membrane and coincides with the appearance of channel activity. The data support the recent theoretical conclusions of Weakliem et al. (1995) which predict that pore formation in the lipid bilayer will occur when the drug molecule concentration exceeds a critical value. At this critical concentration, it is calculated that a minimum number of 16 AmB molecules per liposome are required to observe channel activity. The results are consistent with the sterol-dependent AmB channel models proposed by de Kruijff and Demel (1974), Andreoli (1974), and Khutorsky (1992). To further elucidate the effects of sterol on AmB-mediated channel formation, liposomes were prepared with varying ratios of cholesterol and AmB. At cholesterol mole percentages greater than 1, channel activity was observed to occur at AmB concentrations just above the critical value. Previous reports show that cholesterol forms "tail-to-tail" dimers at mole percentages greater than 2 (Harris et al., 1995). This suggests that formation of the bilayer-spanning channels by AmB is initiated most efficiently when the tail-to-tail dimer of cholesterol is present. Although the structural nature of the AmB channel could not be unambiguously determined, these experiments provide further evidence in support of the widely held view that AmB's primary mechanism of killing fungal cells occurs by forming ion-permeable channels.
通过紫外/可见吸收光谱、圆二色光谱和荧光光谱研究了两性霉素B(AmB)在含胆固醇脂质双层中形成离子渗透通道的能力。制备了由二硬脂酰磷脂酰胆碱、胆固醇、二硬脂酰磷脂酰甘油和AmB组成的稳定脂质体,以便研究双层中广泛的AmB浓度范围。对不同AmB/脂质比下AmB的圆二色光谱进行奇异值分解分析(Henry和Hofrichter,1992)表明,AmB在双层中主要仅以两种状态存在,即“单体”状态和“聚集”状态。从“单体”状态到“聚集”状态的转变在膜中每1000个脂质中有1个AmB的临界浓度时开始发生,并且与通道活性的出现相吻合。这些数据支持了Weakliem等人(1995)最近的理论结论,该结论预测当药物分子浓度超过临界值时脂质双层中会形成孔。在这个临界浓度下,计算得出每个脂质体至少需要16个AmB分子才能观察到通道活性。结果与de Kruijff和Demel(1974)、Andreoli(1974)以及Khutorsky(1992)提出的甾醇依赖性AmB通道模型一致。为了进一步阐明甾醇对AmB介导的通道形成的影响,制备了胆固醇和AmB比例不同的脂质体。当胆固醇摩尔百分比大于1时,在略高于临界值的AmB浓度下观察到通道活性。先前的报道表明,胆固醇在摩尔百分比大于2时形成“尾对尾”二聚体(Harris等人,1995)。这表明当存在胆固醇的尾对尾二聚体时,AmB形成跨双层通道的效率最高。尽管无法明确确定AmB通道的结构性质,但这些实验提供了进一步的证据,支持了广泛持有的观点,即AmB杀死真菌细胞的主要机制是通过形成离子渗透通道。