Suppr超能文献

乳腺X线摄影归一化平均腺体剂量表的参数化

Parametrization of mammography normalized average glandular dose tables.

作者信息

Sobol W T, Wu X

机构信息

Department of Radiology, University of Alabama Hospitals and Clinics, University of Alabama at Birmingham 35233, USA.

出版信息

Med Phys. 1997 Apr;24(4):547-54. doi: 10.1118/1.597937.

Abstract

Data from existing tables of normalized glandular doses in mammography were parametrized to determine analytical expressions that match tabulated results within known uncertainties. The parametrization was performed for three different target/filter combinations (molybdenum target-molybdenum filter, molybdenum target-rhodium filter, and rhodium target-rhodium filter) and three different breast compositions (100% adipose, 50% adipose-50% glandular, and 100% glandular). The analytical expressions provide the normalized glandular dose for any breast composition within stated ranges of tabulated input parameters (kVp, half-value layer, and breast thickness). The maximum difference between tabulated and parametrized data is 1.29%, which is smaller than the stated 2% uncertainty in tabulated dose data due to uncertainties in the x-ray spectra models used to generate the tables. Analytical expressions are easily coded to create custom functions that return the normalized glandular dose for the set of input parameters. Examples of implementation are presented in Microsoft Visual Basic for Applications (VBA).

摘要

对乳腺摄影中已有的标准化腺体剂量表数据进行参数化处理,以确定在已知不确定性范围内与表格结果相匹配的解析表达式。针对三种不同的靶/滤过组合(钼靶-钼滤过、钼靶-铑滤过和铑靶-铑滤过)以及三种不同的乳房组成(100%脂肪、50%脂肪-50%腺体和100%腺体)进行了参数化。这些解析表达式可在表格输入参数(管电压、半价层和乳房厚度)的规定范围内为任何乳房组成提供标准化腺体剂量。表格数据与参数化数据之间的最大差异为1.29%,由于用于生成表格的X射线光谱模型存在不确定性,该差异小于表格剂量数据中规定的2%不确定性。解析表达式易于编码以创建自定义函数,这些函数可根据输入参数集返回标准化腺体剂量。在Microsoft Visual Basic for Applications(VBA)中给出了实现示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验