Jezewska M J, Bujalowski W
Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston 77555-1053, USA.
Biophys Chem. 1997 Feb 28;64(1-3):253-69. doi: 10.1016/s0301-4622(96)02221-1.
Quantitative analyses of the thermodynamics and kinetics of ligand-macromolecule interactions in biological systems rely predominately on monitoring changes in the spectroscopic properties of the ligand or macromolecule, particularly fluorescence changes, which accompany the formation of the studied complexes. However, in many instances the interactions do not affect the fluorescence properties of interacting species and do not provide a resolution high enough to perform quantitative and rigorous measurements of the thermodynamic and/or kinetic parameters. In this communication, we describe the theoretical and experimental aspects of a method of studying complex, multiple ligand-macromolecule interactions by the fluorescence titration technique, when the intrinsic fluorescence changes accompanying binding do not provide a resolution necessary to perform quantitative analyses. The method is based on the fact that a fluorescent ligand, or binding sites of the macromolecule, can have different accessibility to the collisional (dynamic) quencher, when involved in the complex, rather than in the free, unbound state. The presence of an external dynamic quencher in solution, i.e., the presence of an extra collisional quenching process, transforms the fluorescence of the ligand or macromolecule, intrinsically independent of the complex formation, into a property which is dramatically different in the free state than in the bound state of the fluorophore. The approach is applicable to any model of noncooperative or cooperative ligand binding to a macromolecule and allows for the optimization of the resolution of the binding or kinetic studies for a given ligand-macromolecule system. The application of the method is illustrated by applying it to the study of the binding of the fluorescent derivative of a nucleotide cofactor, epsilon ADP, to the six interacting sites of the E. coli primary replicative helicase DnaB protein hexamer.
对生物系统中配体 - 大分子相互作用的热力学和动力学进行定量分析,主要依赖于监测配体或大分子光谱性质的变化,特别是伴随所研究复合物形成的荧光变化。然而,在许多情况下,这些相互作用不会影响相互作用物种的荧光性质,也无法提供足够高的分辨率来对热力学和/或动力学参数进行定量和精确测量。在本通讯中,我们描述了一种通过荧光滴定技术研究复杂的、多个配体 - 大分子相互作用的方法的理论和实验方面,此时伴随结合的固有荧光变化无法提供进行定量分析所需的分辨率。该方法基于这样一个事实,即当荧光配体或大分子的结合位点参与复合物形成而非处于游离、未结合状态时,它们对碰撞(动态)猝灭剂具有不同的可及性。溶液中存在外部动态猝灭剂,即存在额外的碰撞猝灭过程,会将本质上与复合物形成无关的配体或大分子荧光,转变为一种在荧光团的游离状态和结合状态下有显著差异的性质。该方法适用于任何非协同或协同配体与大分子结合的模型,并允许针对给定的配体 - 大分子系统优化结合或动力学研究的分辨率。通过将该方法应用于研究核苷酸辅因子的荧光衍生物ε - ADP与大肠杆菌主要复制解旋酶DnaB蛋白六聚体的六个相互作用位点的结合,说明了该方法的应用。