Suppr超能文献

具有不同特性的谷氨酸能突触处的胶质细胞和神经元谷氨酰胺池。

Glial and neuronal glutamine pools at glutamatergic synapses with distinct properties.

作者信息

Shupliakov O, Ottersen O P, Storm-Mathisen J, Brodin L

机构信息

Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.

出版信息

Neuroscience. 1997 Apr;77(4):1201-12. doi: 10.1016/s0306-4522(96)00537-4.

Abstract

The main pathway for transmitter glutamate turnover in excitatory synapses is thought to involve an uptake in glial processes, a conversion into glutamine, which recycles to the presynaptic terminal to serve as the main precursor for new synthesis of glutamate. To investigate whether the mechanisms of glutamine and glutamate turnover are linked with the properties of different glutamate synapses, the distribution of glutamine was studied in two types of glutamate synapse in the lamprey spinal cord using immunogold post-embedding electron microscopy. The synapses examined are formed by primary afferent axons (dorsal column axons), which predominantly exhibit a tonic firing pattern, and by giant reticulospinal axons, which primarily fire in brief bursts. Glial cell processes and postsynaptic dendrites displayed the highest density of glutamine labeling in both types of synapse. The level of glutamine was significantly higher in the glial cell processes surrounding the tonic dorsal column synapses, as compared to those surrounding the reticulospinal synapses. The axoplasmic matrix and presynaptic mitochondria, as well as postsynaptic dendrites, contained similar levels of glutamine labeling in both cases. The glutamate labeling in glial processes was also similar at the two types of synapse, while axoplasmic matrix and presynaptic mitochondria displayed four to six times higher levels in the tonic axons. In conjunction with our previous results, showing a different transport activity in glial processes of the two types of excitatory synapse, the results of the present study suggest that the glial pool of neurotransmitter precursor is linked to the rate of transmitter synthesis and release in adjacent synapses.

摘要

兴奋性突触中递质谷氨酸周转的主要途径被认为涉及在胶质细胞突起中的摄取、转化为谷氨酰胺,谷氨酰胺再循环到突触前终末作为谷氨酸新合成的主要前体。为了研究谷氨酰胺和谷氨酸周转机制是否与不同谷氨酸突触的特性相关,利用免疫金包埋后电子显微镜技术研究了七鳃鳗脊髓中两种类型谷氨酸突触中谷氨酰胺的分布。所检测的突触由主要呈现紧张性放电模式的初级传入轴突(背柱轴突)以及主要以短暂爆发形式放电的巨大网状脊髓轴突形成。在两种类型的突触中,胶质细胞突起和突触后树突都显示出最高密度的谷氨酰胺标记。与围绕网状脊髓突触的胶质细胞突起相比,围绕紧张性背柱突触的胶质细胞突起中的谷氨酰胺水平显著更高。在这两种情况下,轴浆基质、突触前线粒体以及突触后树突中的谷氨酰胺标记水平相似。在两种类型的突触中,胶质细胞突起中的谷氨酸标记也相似,而在紧张性轴突中,轴浆基质和突触前线粒体中的谷氨酸标记水平高出四到六倍。结合我们之前的结果,即在两种类型的兴奋性突触的胶质细胞突起中显示出不同的转运活性,本研究结果表明神经递质前体的胶质细胞池与相邻突触中递质的合成和释放速率相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验