Suppr超能文献

体外重建的超氧化物生成NADPH氧化酶复合物中的电子转移。

Electron transfer in the superoxide-generating NADPH oxidase complex reconstituted in vitro.

作者信息

Koshkin V, Lotan O, Pick E

机构信息

Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research, Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Israel.

出版信息

Biochim Biophys Acta. 1997 Apr 11;1319(2-3):139-46. doi: 10.1016/s0005-2728(96)00154-5.

Abstract

The superoxide (O2-)-generating NADPH oxidase of phagocytic cells is composed of a membrane-bound flavocytochrome (cytochrome b-559) and three cytosolic components, p47-phox, p67-phox, and the small GTPase rac-1 (or 2). Cytochrome b-559 bears the NADPH binding site and the redox centers (FAD and heme). Electron flow through the redox centers, from NADPH to oxygen, is activated consequent to the assembly of the three cytosolic components with cytochrome b-559. We studied the kinetics of electron flow through the redox centers of NADPH oxidase in a cell-free system, consisting of purified relipidated and reflavinated cytochrome b-559 and recombinant cytosolic components, activated by the anionic amphiphile, lithium dodecyl sulphate. The NADPH oxidase complex assembled in vitro exhibited: (a) a high steady-state electron flow (165 electrons/heme/s); (b) low stationary levels of FAD and heme reduction (about 10%), and (c) a high rate constant of heme oxidation by oxygen (1720 s-1). Surprisingly, the kinetic properties of NADPH oxidase assembled in a semi-recombinant cell-free system, lacking p47-phox (found to generate significant amounts of O2-), were similar to those of the complete system, as shown by a steady-state electron flow of 83 electrons/heme/s, low stationary levels of FAD and heme reduction (10%), and a rate constant of heme oxidation by oxygen of 1455 s-1. The kinetic features of NADPH oxidase assembled in vitro from purified and recombinant components differ considerably from those of solubilized enzyme preparations derived from intact stimulated phagocytes. The fast operation of the cell-free system is best explained by the activation-related facilitation of electron flow at both the FAD-->heme and the heme-->oxygen steps.

摘要

吞噬细胞中产生超氧化物(O2-)的NADPH氧化酶由膜结合黄素细胞色素(细胞色素b-559)和三种胞质成分p47-phox、p67-phox以及小GTP酶rac-1(或rac-2)组成。细胞色素b-559带有NADPH结合位点和氧化还原中心(FAD和血红素)。随着三种胞质成分与细胞色素b-559组装,电子从NADPH流经氧化还原中心到氧的流动被激活。我们在一个无细胞系统中研究了电子流经NADPH氧化酶氧化还原中心的动力学,该系统由纯化的重新脂质化和重新黄素化的细胞色素b-559以及重组胞质成分组成,由阴离子两亲物十二烷基硫酸锂激活。体外组装的NADPH氧化酶复合物表现出:(a)高稳态电子流(165个电子/血红素/秒);(b)FAD和血红素还原的低稳定水平(约10%),以及(c)血红素被氧氧化的高速率常数(1720 s-1)。令人惊讶的是,在缺乏p47-phox(发现其会产生大量O2-)的半重组无细胞系统中组装的NADPH氧化酶的动力学特性与完整系统相似,稳态电子流为83个电子/血红素/秒,FAD和血红素还原的低稳定水平(10%),以及血红素被氧氧化的速率常数为1455 s-1。从纯化和重组成分体外组装的NADPH氧化酶的动力学特征与来自完整刺激吞噬细胞的溶解酶制剂有很大不同。无细胞系统的快速运作最好通过FAD→血红素和血红素→氧步骤中与激活相关的电子流促进来解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验