Li H, Tejero R, Monleon D, Bassolino-Klimas D, Abate-Shen C, Bruccoleri R E, Montelione G T
Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854-5638, USA.
Protein Sci. 1997 May;6(5):956-70. doi: 10.1002/pro.5560060502.
We have developed an automatic approach for homology modeling using restrained molecular dynamics and simulated annealing procedures, together with conformational search algorithms available in the molecular mechanics program CONGEN (Bruccoleri RE, Karplus M, 1987, Biopolymers 26:137-168). The accuracy of the method is validated by "predicting" structures of two homeodomain proteins with known three-dimensional structures, and then applied to predict the three-dimensional structure of the homeodomain of the murine Msx-1 transcription factor. Regions of the unknown protein structure that are highly homologous to the known template structure are constrained by "homology distance constraints," whereas the conformations of nonhomologous regions of the unknown protein are defined only by the potential energy function. A full energy function (excluding explicit solvent) is employed to ensure that the calculated structures have good conformational energies and are physically reasonable. As in NMR structure determinations, information on the consistency of the structure prediction is obtained by superposition of the resulting family of protein structures. In this paper, our homology modeling algorithm is described and compared with related homology modeling methods using spatial constraints derived from the structures of homologous proteins. The software is then used to predict the DNA-bound structures of three homeodomain proteins from the X-ray crystal structure of the engrailed homeodomain protein (Kissinger CR et al., 1990, Cell 63:579-590). The resulting backbone and side-chain conformations of the modeled yeast Mat alpha 2 and D. melanogaster Antennapedia homeodomains are excellent matches to the corresponding published X-ray crystal (Wolberger C et al., 1991, Cell 67:517-528) and NMR (Billeter M et al., 1993, J Mol Biol 234:1084-1097) structures, respectively. Examination of these structures of Msx-1 reveals a network of highly conserved surface salt bridges that are proposed to play a role in regulating protein-protein interactions of homeodomains in transcription complexes.
我们开发了一种自动同源建模方法,该方法使用受限分子动力学和模拟退火程序,以及分子力学程序CONGEN(布鲁科勒里RE,卡尔普拉斯M,1987年,《生物聚合物》26:137 - 168)中可用的构象搜索算法。通过“预测”两种已知三维结构的同源结构域蛋白的结构来验证该方法的准确性,然后将其应用于预测小鼠Msx - 1转录因子同源结构域的三维结构。未知蛋白质结构中与已知模板结构高度同源的区域由“同源距离约束”限制,而未知蛋白质非同源区域的构象仅由势能函数定义。采用完整的能量函数(不包括明确的溶剂)以确保计算出的结构具有良好的构象能量且在物理上合理。如同在核磁共振结构测定中一样,通过叠加所得的蛋白质结构家族来获得结构预测一致性的信息。在本文中,描述了我们的同源建模算法,并与使用源自同源蛋白质结构的空间约束的相关同源建模方法进行了比较。然后使用该软件根据engrailed同源结构域蛋白的X射线晶体结构(基辛格CR等人,1990年,《细胞》63:579 - 590)预测三种同源结构域蛋白的DNA结合结构。所得到的酵母Mat alpha 2和黑腹果蝇触角足同源结构域的主链和侧链构象分别与相应已发表的X射线晶体(沃尔伯格C等人,1991年,《细胞》67:517 - 528)和核磁共振(比勒特M等人,1993年,《分子生物学杂志》234:1084 - 1097)结构完美匹配。对Msx - 1这些结构的研究揭示了一个高度保守的表面盐桥网络,该网络被认为在转录复合物中调节同源结构域的蛋白质 - 蛋白质相互作用中发挥作用。