Department of Medicine and Atherosclerosis Research Unit, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
J Biol Chem. 2010 Feb 12;285(7):4652-65. doi: 10.1074/jbc.M109.069914. Epub 2009 Nov 30.
Conversion of discoidal phospholipid (PL)-rich high density lipoprotein (HDL) to spheroidal cholesteryl ester-rich HDL is a central step in reverse cholesterol transport. A detailed understanding of this process and the atheroprotective role of apolipoprotein A-I (apoA-I) requires knowledge of the structure and dynamics of these various particles. This study, combining computation with experimentation, illuminates structural features of apoA-I allowing it to incorporate varying amounts of PL. Molecular dynamics simulated annealing of PL-rich HDL models containing unesterified cholesterol results in double belt structures with the same general saddle-shaped conformation of both our previous molecular dynamics simulations at 310 K and the x-ray structure of lipid-free apoA-I. Conversion from a discoidal to a saddle-shaped particle involves loss of helicity and formation of loops in opposing antiparallel parts of the double belt. During surface expansion caused by the temperature-jump step, the curved palmitoyloleoylphosphatidylcholine bilayer surfaces approach planarity. Relaxation back into saddle-shaped structures after cool down and equilibration further supports the saddle-shaped particle model. Our kinetic analyses of reconstituted particles demonstrate that PL-rich particles exist in discrete sizes corresponding to local energetic minima. Agreement of experimental and computational determinations of particle size/shape and apoA-I helicity provide additional support for the saddle-shaped particle model. Truncation experiments combined with simulations suggest that the N-terminal proline-rich domain of apoA-I influences the stability of PL-rich HDL particles. We propose that apoA-I incorporates increasing PL in the form of minimal surface bilayers through the incremental unwinding of an initially twisted saddle-shaped apoA-I double belt structure.
盘状磷脂(PL)丰富的高密度脂蛋白(HDL)向球状胆固醇酯丰富的 HDL 的转化是胆固醇逆向转运的中心步骤。详细了解这一过程和载脂蛋白 A-I(apoA-I)的抗动脉粥样硬化作用,需要了解这些不同颗粒的结构和动力学。本研究结合计算与实验,阐明了 apoA-I 的结构特征,使其能够结合不同数量的 PL。含有未酯化胆固醇的 PL 丰富的 HDL 模型的分子动力学模拟退火导致具有相同一般鞍形构象的双带结构,这与我们之前在 310 K 进行的分子动力学模拟和无脂 apoA-I 的 X 射线结构相同。从盘状到鞍状颗粒的转化涉及螺旋的丧失和双带的相对反平行部分中环的形成。在由温度跃变步骤引起的表面扩展期间,弯曲的棕榈酰油酰磷脂酰胆碱双层表面接近平面。在冷却和平衡后,返回到鞍状结构的松弛进一步支持鞍状颗粒模型。我们对重建颗粒的动力学分析表明,PL 丰富的颗粒以对应于局部能量最小值的离散尺寸存在。实验和计算确定的颗粒尺寸/形状和 apoA-I 螺旋的一致性为鞍状颗粒模型提供了额外的支持。截断实验与模拟相结合表明,apoA-I 的 N 端脯氨酸丰富结构域影响 PL 丰富的 HDL 颗粒的稳定性。我们提出,apoA-I 通过初始扭曲的 apoA-I 双带结构的增量展开,以最小表面积双层的形式纳入越来越多的 PL。